First three years of the international verification of neural networks competition (VNN-COMP)

This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on software tools for technology transfer Jg. 25; H. 3; S. 329 - 339
Hauptverfasser: Brix, Christopher, Müller, Mark Niklas, Bak, Stanley, Johnson, Taylor T., Liu, Changliu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Schlagworte:
ISSN:1433-2779, 1433-2787
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy specifications describing their input-output behavior. These neural networks and specifications cover a variety of problem classes and tasks, corresponding to safety and robustness properties in image classification, neural control, reinforcement learning, and autonomous systems. We summarize the key processes, rules, and results, present trends observed over the last three years, and provide an outlook into possible future developments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1433-2779
1433-2787
DOI:10.1007/s10009-023-00703-4