Spotting Suspicious Academic Citations Using Self-Learning Graph Transformers
The study introduces a novel approach to identify potential citation manipulation within academic papers. This method utilizes perturbations of a deep embedding model, integrating Graph-Masked Autoencoders to merge textual information with evidence of graph connectivity. Consequently, it yields a mo...
Saved in:
| Published in: | Mathematics (Basel) Vol. 12; no. 6; p. 814 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.03.2024
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The study introduces a novel approach to identify potential citation manipulation within academic papers. This method utilizes perturbations of a deep embedding model, integrating Graph-Masked Autoencoders to merge textual information with evidence of graph connectivity. Consequently, it yields a more intricate model of citation distribution. By training a deep network with partial data and reconstructing masked connections, the approach capitalizes on the inherent characteristics of central connections amidst network perturbations. It demonstrates its ability to pinpoint trustworthy citations within the analyzed dataset through comprehensive quantitative evaluations. Additionally, it raises concerns regarding the reliability of specific references, which may be subject to manipulation. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math12060814 |