Elliptic methods for solving the linearized field equations of causal variational principles

The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calculus of variations and partial differential equations Ročník 61; číslo 4
Hlavní autoři: Finster, Felix, Lottner, Magdalena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Témata:
ISSN:0944-2669, 1432-0835
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L 2 -scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained.
AbstractList The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L2-scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained.
The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L 2 -scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained.
The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted $$L^2$$ L 2 -scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained.
ArticleNumber 133
Author Lottner, Magdalena
Finster, Felix
Author_xml – sequence: 1
  givenname: Felix
  orcidid: 0000-0002-9531-7742
  surname: Finster
  fullname: Finster, Felix
  email: finster@ur.de
  organization: Fakultät für Mathematik, Universität Regensburg
– sequence: 2
  givenname: Magdalena
  surname: Lottner
  fullname: Lottner, Magdalena
  organization: Fakultät für Mathematik, Universität Regensburg
BookMark eNp9kEtLAzEYRYMoWKt_wFXA9WgmySSZpYgvKLjRnRAymS9tSjppk6mgv960FQQXLkIe3BPud87Q8RAHQOiyJtc1IfImE9JQURFKd4vJihyhSc1ZuSrWHKMJaTmvqBDtKTrLeUlI3SjKJ-j9PgS_Hr3FKxgXsc_YxYRzDB9-mONxATj4AUzyX9Bj5yH0GDZbM_o4ZBwdtmabTcAfJbF_LOd18oP16wD5HJ04EzJc_OxT9PZw_3r3VM1eHp_vbmeVZYKNlWgM9J0kvHEga6K4olKCZEZI5Vpwqu9oZ6mVvBO8ZcwwYVXtpFOO1F0PbIquDv-uU9xsIY96GbepdMm6jMyJaFohS4oeUjbFnBM4XZquTPrUNdE7i_pgUReDem9RkwKpP5D1437SMRkf_kfZAc07I3NIv63-ob4BVGmJ_g
CitedBy_id crossref_primary_10_1007_s00526_025_02952_4
Cites_doi 10.4310/PAMQ.2021.v17.n1.a3
10.1007/s00526-019-1652-7
10.1007/978-3-030-38941-3_2
10.1007/s10013-018-0295-x
10.1007/978-3-540-34514-5
10.4310/MAA.2020.v27.n1.a1
10.1007/978-3-319-42067-7
10.1007/s00205-013-0649-1
10.1515/acv-2020-0014
10.1007/978-1-4612-0541-8
10.1088/1742-6596/626/1/012020
10.1090/surv/083/03
10.1007/s10455-021-09775-4
10.1515/crelle.2010.069
10.1063/1.5125585
10.1088/1742-6596/968/1/012004
10.4310/ATMP.2020.v24.n3.a2
10.1007/s00526-017-1153-5
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00526-022-02237-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
ExternalDocumentID 10_1007_s00526_022_02237_0
GrantInformation_xml – fundername: Studienstiftung des Deutschen Volkes
  grantid: Marianne-Plehn-Programm
  funderid: http://dx.doi.org/10.13039/501100004350
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c363t-65aedb7045fe710848277e73a678f9ef8db2bc2c74b64933a36c81f7f8f01bde3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795591300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-2669
IngestDate Wed Sep 17 23:55:55 EDT 2025
Tue Nov 18 20:45:27 EST 2025
Sat Nov 29 06:45:37 EST 2025
Fri Feb 21 02:46:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 46E35
49S05
35J50
49Q20
58C35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-65aedb7045fe710848277e73a678f9ef8db2bc2c74b64933a36c81f7f8f01bde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9531-7742
OpenAccessLink https://link.springer.com/10.1007/s00526-022-02237-0
PQID 2664065967
PQPubID 32028
ParticipantIDs proquest_journals_2664065967
crossref_primary_10_1007_s00526_022_02237_0
crossref_citationtrail_10_1007_s00526_022_02237_0
springer_journals_10_1007_s00526_022_02237_0
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Finster, F., Kleiner, J.: Causal fermion systems as a candidate for a unified physical theory. arXiv:1502.03587 [math-ph]. J. Phys.: Conf. Ser. 626, 012020 (2015)
Helgason, S.: Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000). Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original
Finster, F.: Perturbation theory for critical points of causal variational principles. arXiv:1703.05059 [math-ph]. Adv. Theor. Math. Phys. 24, no. 3, 563–619 (2020)
Finster, F., Schiefeneder, D.: On the support of minimizers of causal variational principles. arXiv:1012.1589 [math-ph]. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013)
Finster, F., Kleiner, J.: A Hamiltonian formulation of causal variational principles. arXiv:1612.07192 [math-ph]. Calc. Var. Partial Differential Equations 56:73(3), 33 (2017)
LangSFundamentals of Differential Geometry, Graduate Texts in Mathematics1999New YorkSpringer10.1007/978-1-4612-0541-8
Finster, F., Kamran, N.: Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles. arXiv:1808.03177 [math-ph]. Pure Appl. Math. Q. 17(1), 55–140 (2021)
Link to web platform on causal fermion systems. https://www.causal-fermion-system.com
Dappiaggi, C., Finster, F.: Linearized fields for causal variational principles: existence theory and causal structure. arXiv:1811.10587 [math-ph]. Methods Appl. Anal. 27(1), 1–56 (2020)
Finster, F.: The continuum limit of causal fermion systems. arXiv:1605.04742 [math-ph]. Fundamental Theories of Physics, vol. 186, Springer (2016)
Finster, F.: Causal fermion systems: a primer for Lorentzian geometers. arXiv:1709.04781 [math-ph]. J. Phys.: Conf. Ser. 968, 012004 (2018)
Finster, F., Platzer, A.: A positive mass theorem for static causal fermion systems. arXiv:1912.12995 [math-ph]. To appear in Adv. Theor. Math. Phys. (2022)
Finster, F., Langer, C.: Causal variational principles in the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-locally compact setting: Existence of minimizers. arXiv:2002.04412 [math-ph]. To appear in Adv. Calc. Var. (2021)
BogachevVIMeasure Theory2007BerlinSpringer10.1007/978-3-540-34514-5
Finster, F., Lottner, M.: Banach manifold structure and infinite-dimensional analysis for causal fermion systems. arXiv:2101.11908 [math-ph]. Ann. Global Anal. Geom. 60(2), 313–354 (2021)
Finster, F.: Causal variational principles on measure spaces. arXiv:0811.2666 [math-ph]. J. Reine Angew. Math. 646, 141–194 (2010)
Finster, F., Jokel, M.: Causal fermion systems: An elementary introduction to physical ideas and mathematical concepts. arXiv:1908.08451 [math-ph]. Progress and Visions in Quantum Theory in View of Gravity (F. Finster, D. Giulini, J. Kleiner, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, pp. 63–92 (2020)
Finster, F., Treude, J.-H.: An Introductory Course on Causal Fermion Systems, in preparation. https://www.causal-fermion-system.com/intro-public.pdf
Bäuml, L., Finster, F., von der Mosel, H., Schiefeneder, D.: Singular support of minimizers of the causal variational principle on the sphere. arXiv:1808.09754 [math.CA]. Calc. Var. Partial Differential Equations 58(6), 205 (2019)
Finster, F.: Positive functionals induced by minimizers of causal variational principles. arXiv:1708.07817 [math-ph]. Vietnam J. Math. 47, 23–37 (2019)
GlimmJJaffeAQuantum Physics, a Functional Integral Point of View19872New YorkSpringer0461.46051
Finster, F., Kindermann, S.: A gauge fixing procedure for causal fermion systems. arXiv:1908.08445 [math-ph], J. Math. Phys. 61(8), 082301 (2020)
ReedMSimonBMethods of Modern Mathematical Physics. I, Functional Analysis19802New YorkAcademic Press Inc.0459.46001
2237_CR6
2237_CR12
S Lang (2237_CR21) 1999
VI Bogachev (2237_CR2) 2007
2237_CR7
2237_CR11
2237_CR22
2237_CR8
2237_CR10
2237_CR9
2237_CR20
2237_CR16
2237_CR3
2237_CR15
2237_CR4
2237_CR14
2237_CR5
2237_CR13
M Reed (2237_CR23) 1980
2237_CR1
J Glimm (2237_CR19) 1987
2237_CR18
2237_CR17
References_xml – reference: Finster, F.: Perturbation theory for critical points of causal variational principles. arXiv:1703.05059 [math-ph]. Adv. Theor. Math. Phys. 24, no. 3, 563–619 (2020)
– reference: Link to web platform on causal fermion systems. https://www.causal-fermion-system.com
– reference: Dappiaggi, C., Finster, F.: Linearized fields for causal variational principles: existence theory and causal structure. arXiv:1811.10587 [math-ph]. Methods Appl. Anal. 27(1), 1–56 (2020)
– reference: GlimmJJaffeAQuantum Physics, a Functional Integral Point of View19872New YorkSpringer0461.46051
– reference: Helgason, S.: Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000). Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original
– reference: Finster, F.: Causal fermion systems: a primer for Lorentzian geometers. arXiv:1709.04781 [math-ph]. J. Phys.: Conf. Ser. 968, 012004 (2018)
– reference: Finster, F., Langer, C.: Causal variational principles in the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-locally compact setting: Existence of minimizers. arXiv:2002.04412 [math-ph]. To appear in Adv. Calc. Var. (2021)
– reference: Finster, F., Kindermann, S.: A gauge fixing procedure for causal fermion systems. arXiv:1908.08445 [math-ph], J. Math. Phys. 61(8), 082301 (2020)
– reference: Finster, F., Schiefeneder, D.: On the support of minimizers of causal variational principles. arXiv:1012.1589 [math-ph]. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013)
– reference: Finster, F., Jokel, M.: Causal fermion systems: An elementary introduction to physical ideas and mathematical concepts. arXiv:1908.08451 [math-ph]. Progress and Visions in Quantum Theory in View of Gravity (F. Finster, D. Giulini, J. Kleiner, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, pp. 63–92 (2020)
– reference: Finster, F.: Causal variational principles on measure spaces. arXiv:0811.2666 [math-ph]. J. Reine Angew. Math. 646, 141–194 (2010)
– reference: Finster, F., Treude, J.-H.: An Introductory Course on Causal Fermion Systems, in preparation. https://www.causal-fermion-system.com/intro-public.pdf
– reference: Finster, F., Kamran, N.: Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles. arXiv:1808.03177 [math-ph]. Pure Appl. Math. Q. 17(1), 55–140 (2021)
– reference: ReedMSimonBMethods of Modern Mathematical Physics. I, Functional Analysis19802New YorkAcademic Press Inc.0459.46001
– reference: Bäuml, L., Finster, F., von der Mosel, H., Schiefeneder, D.: Singular support of minimizers of the causal variational principle on the sphere. arXiv:1808.09754 [math.CA]. Calc. Var. Partial Differential Equations 58(6), 205 (2019)
– reference: BogachevVIMeasure Theory2007BerlinSpringer10.1007/978-3-540-34514-5
– reference: Finster, F., Kleiner, J.: Causal fermion systems as a candidate for a unified physical theory. arXiv:1502.03587 [math-ph]. J. Phys.: Conf. Ser. 626, 012020 (2015)
– reference: Finster, F.: Positive functionals induced by minimizers of causal variational principles. arXiv:1708.07817 [math-ph]. Vietnam J. Math. 47, 23–37 (2019)
– reference: Finster, F., Platzer, A.: A positive mass theorem for static causal fermion systems. arXiv:1912.12995 [math-ph]. To appear in Adv. Theor. Math. Phys. (2022)
– reference: Finster, F., Kleiner, J.: A Hamiltonian formulation of causal variational principles. arXiv:1612.07192 [math-ph]. Calc. Var. Partial Differential Equations 56:73(3), 33 (2017)
– reference: Finster, F., Lottner, M.: Banach manifold structure and infinite-dimensional analysis for causal fermion systems. arXiv:2101.11908 [math-ph]. Ann. Global Anal. Geom. 60(2), 313–354 (2021)
– reference: LangSFundamentals of Differential Geometry, Graduate Texts in Mathematics1999New YorkSpringer10.1007/978-1-4612-0541-8
– reference: Finster, F.: The continuum limit of causal fermion systems. arXiv:1605.04742 [math-ph]. Fundamental Theories of Physics, vol. 186, Springer (2016)
– ident: 2237_CR10
  doi: 10.4310/PAMQ.2021.v17.n1.a3
– volume-title: Methods of Modern Mathematical Physics. I, Functional Analysis
  year: 1980
  ident: 2237_CR23
– ident: 2237_CR1
  doi: 10.1007/s00526-019-1652-7
– ident: 2237_CR9
  doi: 10.1007/978-3-030-38941-3_2
– ident: 2237_CR7
  doi: 10.1007/s10013-018-0295-x
– ident: 2237_CR22
– ident: 2237_CR18
– volume-title: Quantum Physics, a Functional Integral Point of View
  year: 1987
  ident: 2237_CR19
– volume-title: Measure Theory
  year: 2007
  ident: 2237_CR2
  doi: 10.1007/978-3-540-34514-5
– ident: 2237_CR3
  doi: 10.4310/MAA.2020.v27.n1.a1
– ident: 2237_CR16
– ident: 2237_CR5
  doi: 10.1007/978-3-319-42067-7
– ident: 2237_CR17
  doi: 10.1007/s00205-013-0649-1
– ident: 2237_CR14
  doi: 10.1515/acv-2020-0014
– volume-title: Fundamentals of Differential Geometry, Graduate Texts in Mathematics
  year: 1999
  ident: 2237_CR21
  doi: 10.1007/978-1-4612-0541-8
– ident: 2237_CR12
  doi: 10.1088/1742-6596/626/1/012020
– ident: 2237_CR20
  doi: 10.1090/surv/083/03
– ident: 2237_CR15
  doi: 10.1007/s10455-021-09775-4
– ident: 2237_CR4
  doi: 10.1515/crelle.2010.069
– ident: 2237_CR11
  doi: 10.1063/1.5125585
– ident: 2237_CR6
  doi: 10.1088/1742-6596/968/1/012004
– ident: 2237_CR8
  doi: 10.4310/ATMP.2020.v24.n3.a2
– ident: 2237_CR13
  doi: 10.1007/s00526-017-1153-5
SSID ssj0015824
Score 2.3302603
Snippet The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analysis
Calculus
Calculus of Variations and Optimal Control; Optimization
Control
Differential calculus
Elliptic functions
Fermions
Function space
Hilbert space
Linearization
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial differential equations
Systems Theory
Theoretical
Variational principles
Title Elliptic methods for solving the linearized field equations of causal variational principles
URI https://link.springer.com/article/10.1007/s00526-022-02237-0
https://www.proquest.com/docview/2664065967
Volume 61
WOSCitedRecordID wos000795591300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSgMxcJDqQQ--xWqVHLxpYHezm-weRSxeLOKLHoRlk01AkFqbtge_3kn2URQV9LCnTJJlZjKPzGQG4CQp0WvgRUJR2XGKGsLgmZOCRmhrGy2ks1F9swkxGKTDYXZTPwqzTbZ7E5L0krp97OZLk1CXfY4fExQd9WVUd6lr2HB799jGDpLUt7JFvyXGLXlWP5X5fo3P6mhhY34Ji3pt09_4339uwnptXZLzih22YEmPtmHtui3NanfgyWVpoJxQpGoebQmarQQ50N0sEAQkzvBED_pdl8TntxH9VtUDt-TVEFXMLG4xR4j6HpGMmwt7uwsP_cv7iytat1iginE2pTwpdCkF2nVImNDV1o-E0IIVqMNMpk1aykiqSIlY8jhjrGBcpaERJjVBKEvN9qAzeh3pfSAikFGBJxxd6iBWOIrCRKMYLkVWxDFjXQgbTOeqrj_u2mC85G3lZI-5HLGWe8zlQRdO2znjqvrGr9C9hoB5fRJtjhwQu9gxF104awi2GP55tYO_gR_CauRp7nIDe9CZTmb6CFbUfPpsJ8eeQz8ARnDdsA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kCuqD3-J0ah5800LXtE37KOKYuA3RKXsQQpOmIMg2l20P_vVe0o-hqKAPfUqalrvLfeQuvwM4C1KMGsIkcNDYhQ5aiAz3nGCOh752ppgwPqptNsF6vWgwiO-KS2G6rHYvU5JWU1eX3Sw0iWOqz_GhzMFAfdlHi2UQ8-8fnqrcQRDZVrYYt_j4yTAursp8v8Znc7TwMb-kRa21aW3-7z-3YKPwLsllLg7bsKSGO7DeraBZ9S48myoN1BOS5M2jNUG3laAEmpMFghOJcTwxgn5XKbH1bUS95XjgmowyIpOZxk_McUZxjkjG5YG93oPH1nX_qu0ULRYcSUM6dcIgUalg6NchY5oGW99jTDGaoA3LYpVFqfCE9CTzRejHlCY0lFEzY1mUuU2RKroPteFoqA6AMFd4Ce5wDKldX-IoKhOFajhlceL7lNahWVKaywJ_3LTBeOUVcrKlHEeqcUs57tbhvHpnnKNv_Dq7UTKQFztRc5QA3-SOQ1aHi5Jhi-GfVzv82_RTWG33ux3euendHsGaZ_lv6gQbUJtOZuoYVuR8-qInJ1ZaPwCzO-CU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3E6NQ--adnapE37KOpQ1DHwgz0IoUkTEKSba7cH_3ov6cdUVBAf-pRrWnKX3F3u7ncIHfkJeA1B7Dug7AIHNISGPSeY44GtrRUTxka1zSZYrxcOBlH_QxW_zXavQpJFTYNBaUrz9ijR7brwzcKUOCYTHR7CHHDa56lJpDf--t1jHUfwQ9vWFnwYCp8PorJs5vs5Pqummb35JURqNU939f__vIZWSqsTnxZiso7mVLqBlm9ryNZsEz2Z7A04PyQumkpnGMxZDJJpbhwwEGJjkIJn_aYSbPPesHotcMIzPNRYxpMMPjEFivJ-EY-qi_xsCz10L-7PLp2y9YIjSUByJ_BjlQgG9h4wzDWY-x5jipEYdJuOlA4T4QnpSUZFQCNCYhLI0NVMh7rjikSRbdRIh6naQZh1hBfDzgdXu0MljMIho-B4TlgUU0pIE7nVqnNZ4pKb9hgvvEZUtivHYdW4XTneaaLj-p1RgcrxK3WrYiYvd2jGQRqoiSkHrIlOKubNhn-ebfdv5IdosX_e5TdXves9tORZ9pv0wRZq5OOJ2kcLcpo_Z-MDK7jvSODpeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elliptic+methods+for+solving+the+linearized+field+equations+of+causal+variational+principles&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Finster%2C+Felix&rft.au=Lottner%2C+Magdalena&rft.date=2022-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=61&rft.issue=4&rft_id=info:doi/10.1007%2Fs00526-022-02237-0&rft.externalDocID=10_1007_s00526_022_02237_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon