Elliptic methods for solving the linearized field equations of causal variational principles
The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L...
Uloženo v:
| Vydáno v: | Calculus of variations and partial differential equations Ročník 61; číslo 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted
L
2
-scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained. |
|---|---|
| AbstractList | The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L2-scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained. The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted L 2 -scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained. The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are formulated weakly with an integral operator which is shown to be bounded and symmetric on a Hilbert space endowed with a suitably adapted weighted $$L^2$$ L 2 -scalar product. Guided by the procedure in the theory of linear elliptic partial differential equations, we use the spectral calculus to define Sobolev-type Hilbert spaces and invert the linearized field operator as an operator between such function spaces. The uniqueness of the resulting weak solutions is analyzed. Our constructions are illustrated in simple explicit examples. The connection to the causal action principle for static causal fermion systems is explained. |
| ArticleNumber | 133 |
| Author | Lottner, Magdalena Finster, Felix |
| Author_xml | – sequence: 1 givenname: Felix orcidid: 0000-0002-9531-7742 surname: Finster fullname: Finster, Felix email: finster@ur.de organization: Fakultät für Mathematik, Universität Regensburg – sequence: 2 givenname: Magdalena surname: Lottner fullname: Lottner, Magdalena organization: Fakultät für Mathematik, Universität Regensburg |
| BookMark | eNp9kEtLAzEYRYMoWKt_wFXA9WgmySSZpYgvKLjRnRAymS9tSjppk6mgv960FQQXLkIe3BPud87Q8RAHQOiyJtc1IfImE9JQURFKd4vJihyhSc1ZuSrWHKMJaTmvqBDtKTrLeUlI3SjKJ-j9PgS_Hr3FKxgXsc_YxYRzDB9-mONxATj4AUzyX9Bj5yH0GDZbM_o4ZBwdtmabTcAfJbF_LOd18oP16wD5HJ04EzJc_OxT9PZw_3r3VM1eHp_vbmeVZYKNlWgM9J0kvHEga6K4olKCZEZI5Vpwqu9oZ6mVvBO8ZcwwYVXtpFOO1F0PbIquDv-uU9xsIY96GbepdMm6jMyJaFohS4oeUjbFnBM4XZquTPrUNdE7i_pgUReDem9RkwKpP5D1437SMRkf_kfZAc07I3NIv63-ob4BVGmJ_g |
| CitedBy_id | crossref_primary_10_1007_s00526_025_02952_4 |
| Cites_doi | 10.4310/PAMQ.2021.v17.n1.a3 10.1007/s00526-019-1652-7 10.1007/978-3-030-38941-3_2 10.1007/s10013-018-0295-x 10.1007/978-3-540-34514-5 10.4310/MAA.2020.v27.n1.a1 10.1007/978-3-319-42067-7 10.1007/s00205-013-0649-1 10.1515/acv-2020-0014 10.1007/978-1-4612-0541-8 10.1088/1742-6596/626/1/012020 10.1090/surv/083/03 10.1007/s10455-021-09775-4 10.1515/crelle.2010.069 10.1063/1.5125585 10.1088/1742-6596/968/1/012004 10.4310/ATMP.2020.v24.n3.a2 10.1007/s00526-017-1153-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s00526-022-02237-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1432-0835 |
| ExternalDocumentID | 10_1007_s00526_022_02237_0 |
| GrantInformation_xml | – fundername: Studienstiftung des Deutschen Volkes grantid: Marianne-Plehn-Programm funderid: http://dx.doi.org/10.13039/501100004350 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7Z Z88 Z8T Z92 ZMTXR ZWQNP ~EX 88I 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ABUWG ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c363t-65aedb7045fe710848277e73a678f9ef8db2bc2c74b64933a36c81f7f8f01bde3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795591300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0944-2669 |
| IngestDate | Wed Sep 17 23:55:55 EDT 2025 Tue Nov 18 20:45:27 EST 2025 Sat Nov 29 06:45:37 EST 2025 Fri Feb 21 02:46:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 46E35 49S05 35J50 49Q20 58C35 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-65aedb7045fe710848277e73a678f9ef8db2bc2c74b64933a36c81f7f8f01bde3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9531-7742 |
| OpenAccessLink | https://link.springer.com/10.1007/s00526-022-02237-0 |
| PQID | 2664065967 |
| PQPubID | 32028 |
| ParticipantIDs | proquest_journals_2664065967 crossref_primary_10_1007_s00526_022_02237_0 crossref_citationtrail_10_1007_s00526_022_02237_0 springer_journals_10_1007_s00526_022_02237_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Calculus of variations and partial differential equations |
| PublicationTitleAbbrev | Calc. Var |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Finster, F., Kleiner, J.: Causal fermion systems as a candidate for a unified physical theory. arXiv:1502.03587 [math-ph]. J. Phys.: Conf. Ser. 626, 012020 (2015) Helgason, S.: Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000). Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original Finster, F.: Perturbation theory for critical points of causal variational principles. arXiv:1703.05059 [math-ph]. Adv. Theor. Math. Phys. 24, no. 3, 563–619 (2020) Finster, F., Schiefeneder, D.: On the support of minimizers of causal variational principles. arXiv:1012.1589 [math-ph]. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013) Finster, F., Kleiner, J.: A Hamiltonian formulation of causal variational principles. arXiv:1612.07192 [math-ph]. Calc. Var. Partial Differential Equations 56:73(3), 33 (2017) LangSFundamentals of Differential Geometry, Graduate Texts in Mathematics1999New YorkSpringer10.1007/978-1-4612-0541-8 Finster, F., Kamran, N.: Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles. arXiv:1808.03177 [math-ph]. Pure Appl. Math. Q. 17(1), 55–140 (2021) Link to web platform on causal fermion systems. https://www.causal-fermion-system.com Dappiaggi, C., Finster, F.: Linearized fields for causal variational principles: existence theory and causal structure. arXiv:1811.10587 [math-ph]. Methods Appl. Anal. 27(1), 1–56 (2020) Finster, F.: The continuum limit of causal fermion systems. arXiv:1605.04742 [math-ph]. Fundamental Theories of Physics, vol. 186, Springer (2016) Finster, F.: Causal fermion systems: a primer for Lorentzian geometers. arXiv:1709.04781 [math-ph]. J. Phys.: Conf. Ser. 968, 012004 (2018) Finster, F., Platzer, A.: A positive mass theorem for static causal fermion systems. arXiv:1912.12995 [math-ph]. To appear in Adv. Theor. Math. Phys. (2022) Finster, F., Langer, C.: Causal variational principles in the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-locally compact setting: Existence of minimizers. arXiv:2002.04412 [math-ph]. To appear in Adv. Calc. Var. (2021) BogachevVIMeasure Theory2007BerlinSpringer10.1007/978-3-540-34514-5 Finster, F., Lottner, M.: Banach manifold structure and infinite-dimensional analysis for causal fermion systems. arXiv:2101.11908 [math-ph]. Ann. Global Anal. Geom. 60(2), 313–354 (2021) Finster, F.: Causal variational principles on measure spaces. arXiv:0811.2666 [math-ph]. J. Reine Angew. Math. 646, 141–194 (2010) Finster, F., Jokel, M.: Causal fermion systems: An elementary introduction to physical ideas and mathematical concepts. arXiv:1908.08451 [math-ph]. Progress and Visions in Quantum Theory in View of Gravity (F. Finster, D. Giulini, J. Kleiner, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, pp. 63–92 (2020) Finster, F., Treude, J.-H.: An Introductory Course on Causal Fermion Systems, in preparation. https://www.causal-fermion-system.com/intro-public.pdf Bäuml, L., Finster, F., von der Mosel, H., Schiefeneder, D.: Singular support of minimizers of the causal variational principle on the sphere. arXiv:1808.09754 [math.CA]. Calc. Var. Partial Differential Equations 58(6), 205 (2019) Finster, F.: Positive functionals induced by minimizers of causal variational principles. arXiv:1708.07817 [math-ph]. Vietnam J. Math. 47, 23–37 (2019) GlimmJJaffeAQuantum Physics, a Functional Integral Point of View19872New YorkSpringer0461.46051 Finster, F., Kindermann, S.: A gauge fixing procedure for causal fermion systems. arXiv:1908.08445 [math-ph], J. Math. Phys. 61(8), 082301 (2020) ReedMSimonBMethods of Modern Mathematical Physics. I, Functional Analysis19802New YorkAcademic Press Inc.0459.46001 2237_CR6 2237_CR12 S Lang (2237_CR21) 1999 VI Bogachev (2237_CR2) 2007 2237_CR7 2237_CR11 2237_CR22 2237_CR8 2237_CR10 2237_CR9 2237_CR20 2237_CR16 2237_CR3 2237_CR15 2237_CR4 2237_CR14 2237_CR5 2237_CR13 M Reed (2237_CR23) 1980 2237_CR1 J Glimm (2237_CR19) 1987 2237_CR18 2237_CR17 |
| References_xml | – reference: Finster, F.: Perturbation theory for critical points of causal variational principles. arXiv:1703.05059 [math-ph]. Adv. Theor. Math. Phys. 24, no. 3, 563–619 (2020) – reference: Link to web platform on causal fermion systems. https://www.causal-fermion-system.com – reference: Dappiaggi, C., Finster, F.: Linearized fields for causal variational principles: existence theory and causal structure. arXiv:1811.10587 [math-ph]. Methods Appl. Anal. 27(1), 1–56 (2020) – reference: GlimmJJaffeAQuantum Physics, a Functional Integral Point of View19872New YorkSpringer0461.46051 – reference: Helgason, S.: Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000). Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original – reference: Finster, F.: Causal fermion systems: a primer for Lorentzian geometers. arXiv:1709.04781 [math-ph]. J. Phys.: Conf. Ser. 968, 012004 (2018) – reference: Finster, F., Langer, C.: Causal variational principles in the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-locally compact setting: Existence of minimizers. arXiv:2002.04412 [math-ph]. To appear in Adv. Calc. Var. (2021) – reference: Finster, F., Kindermann, S.: A gauge fixing procedure for causal fermion systems. arXiv:1908.08445 [math-ph], J. Math. Phys. 61(8), 082301 (2020) – reference: Finster, F., Schiefeneder, D.: On the support of minimizers of causal variational principles. arXiv:1012.1589 [math-ph]. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013) – reference: Finster, F., Jokel, M.: Causal fermion systems: An elementary introduction to physical ideas and mathematical concepts. arXiv:1908.08451 [math-ph]. Progress and Visions in Quantum Theory in View of Gravity (F. Finster, D. Giulini, J. Kleiner, and J. Tolksdorf, eds.), Birkhäuser Verlag, Basel, pp. 63–92 (2020) – reference: Finster, F.: Causal variational principles on measure spaces. arXiv:0811.2666 [math-ph]. J. Reine Angew. Math. 646, 141–194 (2010) – reference: Finster, F., Treude, J.-H.: An Introductory Course on Causal Fermion Systems, in preparation. https://www.causal-fermion-system.com/intro-public.pdf – reference: Finster, F., Kamran, N.: Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles. arXiv:1808.03177 [math-ph]. Pure Appl. Math. Q. 17(1), 55–140 (2021) – reference: ReedMSimonBMethods of Modern Mathematical Physics. I, Functional Analysis19802New YorkAcademic Press Inc.0459.46001 – reference: Bäuml, L., Finster, F., von der Mosel, H., Schiefeneder, D.: Singular support of minimizers of the causal variational principle on the sphere. arXiv:1808.09754 [math.CA]. Calc. Var. Partial Differential Equations 58(6), 205 (2019) – reference: BogachevVIMeasure Theory2007BerlinSpringer10.1007/978-3-540-34514-5 – reference: Finster, F., Kleiner, J.: Causal fermion systems as a candidate for a unified physical theory. arXiv:1502.03587 [math-ph]. J. Phys.: Conf. Ser. 626, 012020 (2015) – reference: Finster, F.: Positive functionals induced by minimizers of causal variational principles. arXiv:1708.07817 [math-ph]. Vietnam J. Math. 47, 23–37 (2019) – reference: Finster, F., Platzer, A.: A positive mass theorem for static causal fermion systems. arXiv:1912.12995 [math-ph]. To appear in Adv. Theor. Math. Phys. (2022) – reference: Finster, F., Kleiner, J.: A Hamiltonian formulation of causal variational principles. arXiv:1612.07192 [math-ph]. Calc. Var. Partial Differential Equations 56:73(3), 33 (2017) – reference: Finster, F., Lottner, M.: Banach manifold structure and infinite-dimensional analysis for causal fermion systems. arXiv:2101.11908 [math-ph]. Ann. Global Anal. Geom. 60(2), 313–354 (2021) – reference: LangSFundamentals of Differential Geometry, Graduate Texts in Mathematics1999New YorkSpringer10.1007/978-1-4612-0541-8 – reference: Finster, F.: The continuum limit of causal fermion systems. arXiv:1605.04742 [math-ph]. Fundamental Theories of Physics, vol. 186, Springer (2016) – ident: 2237_CR10 doi: 10.4310/PAMQ.2021.v17.n1.a3 – volume-title: Methods of Modern Mathematical Physics. I, Functional Analysis year: 1980 ident: 2237_CR23 – ident: 2237_CR1 doi: 10.1007/s00526-019-1652-7 – ident: 2237_CR9 doi: 10.1007/978-3-030-38941-3_2 – ident: 2237_CR7 doi: 10.1007/s10013-018-0295-x – ident: 2237_CR22 – ident: 2237_CR18 – volume-title: Quantum Physics, a Functional Integral Point of View year: 1987 ident: 2237_CR19 – volume-title: Measure Theory year: 2007 ident: 2237_CR2 doi: 10.1007/978-3-540-34514-5 – ident: 2237_CR3 doi: 10.4310/MAA.2020.v27.n1.a1 – ident: 2237_CR16 – ident: 2237_CR5 doi: 10.1007/978-3-319-42067-7 – ident: 2237_CR17 doi: 10.1007/s00205-013-0649-1 – ident: 2237_CR14 doi: 10.1515/acv-2020-0014 – volume-title: Fundamentals of Differential Geometry, Graduate Texts in Mathematics year: 1999 ident: 2237_CR21 doi: 10.1007/978-1-4612-0541-8 – ident: 2237_CR12 doi: 10.1088/1742-6596/626/1/012020 – ident: 2237_CR20 doi: 10.1090/surv/083/03 – ident: 2237_CR15 doi: 10.1007/s10455-021-09775-4 – ident: 2237_CR4 doi: 10.1515/crelle.2010.069 – ident: 2237_CR11 doi: 10.1063/1.5125585 – ident: 2237_CR6 doi: 10.1088/1742-6596/968/1/012004 – ident: 2237_CR8 doi: 10.4310/ATMP.2020.v24.n3.a2 – ident: 2237_CR13 doi: 10.1007/s00526-017-1153-5 |
| SSID | ssj0015824 |
| Score | 2.330167 |
| Snippet | The existence theory is developed for solutions of the inhomogeneous linearized field equations for causal variational principles. These equations are... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Analysis Calculus Calculus of Variations and Optimal Control; Optimization Control Differential calculus Elliptic functions Fermions Function space Hilbert space Linearization Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators (mathematics) Partial differential equations Systems Theory Theoretical Variational principles |
| Title | Elliptic methods for solving the linearized field equations of causal variational principles |
| URI | https://link.springer.com/article/10.1007/s00526-022-02237-0 https://www.proquest.com/docview/2664065967 |
| Volume | 61 |
| WOSCitedRecordID | wos000795591300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0835 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015824 issn: 0944-2669 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yetCDb3F1lRy8aaBN2iY9irh4cRFf7EEozQsEWdfN7h789U7Sx6KooIeeOk3LZJr5MjP5BqGTJEmFFLIkABYS4jmmSE61IamlpRY6MnmkQrMJPhiI4TC_qQ-FuabavUlJhpW6PewWqEmIrz6Hi3ECG_VlcHfCN2y4vXtscwepCK1sYd-SEHA_eX1U5vsxPrujBcb8khYN3qa_8b_v3ETrNbrE55U5bKElM9pGa9ctNavbQU--SgPWCYWr5tEOA2zFYIE-soBBEHvgCTvod6NxqG_D5q3iA3f41WJVzhy8Yg4SdRwRj5uAvdtFD_3L-4srUrdYIIplbEqytDRacsB11gDWEJ4UlBvOSvBhNjdWaEmlooonMktyxkqWKRFbboWNYqkN20Od0evI7COshC4BnjBqaZ5Yk0mRpiamupSC55zKLoobTReq5h_3bTBeipY5OWiuAK0VQXNF1EWn7TPjin3jV-leM4FF_Se6Aiwg8bnjjHfRWTNhi9s_j3bwN_FDtErDnPvawB7qTCczc4RW1Hz67CbHwUI_AGnK32Y |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6ignrwLa7PHLxpoJukTXoUcVFcF9FVPAileYEgu6td9-Cvd5I-RFFBDz11mpbJNPNlZvINQgecx1JJlRMAC5x4jimSUmNJ7GhupIlsGunQbEL0evL-Pr2qDoUVdbV7nZIMK3Vz2C1QkxBffQ4XEwQ26jMcPJZnzL--uWtyB7EMrWxh38IJuJ-0Oirz_Rif3dEHxvySFg3eprP0v-9cRosVusTHpTmsoCk7WEULlw01a7GGHnyVBqwTGpfNowsMsBWDBfrIAgZB7IEn7KDfrMGhvg3b55IPvMBDh3X-WsArJiBRxRHxqA7YF-votnPaPzkjVYsFolnCxiSJc2uUAFznLGAN6UlBhRUsBx_mUuukUVRpqgVXCU8Zy1miZdsJJ13UVsayDTQ9GA7sJsJamhzgCaOOptzZRMk4tm1qciVFKqhqoXat6UxX_OO-DcZT1jAnB81loLUsaC6LWuiweWZUsm_8Kr1TT2BW_YlFBhbAfe44ES10VE_Yx-2fR9v6m_g-mjvrX3az7nnvYhvN0zD_vk5wB02PX17tLprVk_Fj8bIXrPUd6x3iSg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yiujBt7i6ag7eNOxukjbpUdRFURfBB3sQSvMCQdbVrh789U7Shw9UEA89dfpgMu18k5n5BqEdziOppMoIgAVOPMcUSaixJHI0M9J0bNLRYdiE6PflYJBcfOjiD9XuVUqy6GnwLE3DcXtkXLtufAs0JcRXosPBBIGgfZL7Qnofr1_e1HmESIaxthDDcAKuKCnbZr6_x2fX9I43v6RIg-fpzf__nRfQXIk68X5hJotowg6X0Ox5TdmaL6NbX70B_w-Ni6HSOQY4i8Ey_Y4DBkHsASlE1q_W4FD3hu1jwROe4weHdfacwyNeQKLcX8SjaiM_X0HXvaOrg2NSjl4gmsVsTOIos0YJwHvOAgaRnixUWMEy8G0usU4aRZWmWnAV84SxjMVadp1w0nW6yli2ihrDh6FdQ1hLkwFsYdTRhDsbKxlFtktNpqRIBFVN1K20nuqSl9yPx7hPa0bloLkUtJYGzaWdJtqtrxkVrBy_SreqxUzLLzRPwRq4zynHoon2qsV7P_3z3db_Jr6Npi8Oe-nZSf90A83QsPy-fLCFGuOnZ7uJpvTL-C5_2gqG-waPROsu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elliptic+methods+for+solving+the+linearized+field+equations+of+causal+variational+principles&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Finster%2C+Felix&rft.au=Lottner%2C+Magdalena&rft.date=2022-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=61&rft.issue=4&rft_id=info:doi/10.1007%2Fs00526-022-02237-0&rft.externalDocID=10_1007_s00526_022_02237_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon |