Fast Kötter–Nielsen–Høholdt interpolation over skew polynomial rings and its application in coding theory

Skew polynomials are a class of non-commutative polynomials that have several applications in computer science, coding theory and cryptography. In particular, skew polynomials can be used to construct and decode evaluation codes in several metrics, like e.g. the Hamming, rank, sum-rank and skew metr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 92; číslo 2; s. 435 - 465
Hlavní autori: Bartz, Hannes, Jerkovits, Thomas, Rosenkilde, Johan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2024
Springer Nature B.V
Predmet:
ISSN:0925-1022, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Skew polynomials are a class of non-commutative polynomials that have several applications in computer science, coding theory and cryptography. In particular, skew polynomials can be used to construct and decode evaluation codes in several metrics, like e.g. the Hamming, rank, sum-rank and skew metric. We propose a fast divide-and-conquer variant of Kötter–Nielsen–Høholdt (KNH) interpolation algorithm: it inputs a list of linear functionals on skew polynomial vectors, and outputs a reduced Gröbner basis of their kernel intersection. We show, that the proposed KNH interpolation can be used to solve the interpolation step of interpolation-based decoding of interleaved Gabidulin codes in the rank-metric, linearized Reed–Solomon codes in the sum-rank metric and skew Reed–Solomon codes in the skew metric requiring at most O ~ s ω M ( n ) operations in F q m , where n is the length of the code, s the interleaving order, M ( n ) the complexity for multiplying two skew polynomials of degree at most n , ω the matrix multiplication exponent and O ~ · the soft- O notation which neglects log factors. This matches the previous best speeds for these tasks, which were obtained by top–down minimal approximant bases techniques, and complements the theory of efficient interpolation over free skew polynomial modules by the bottom-up KNH approach. In contrast to the top–down approach the bottom-up KNH algorithm has no requirements on the interpolation points and thus does not require any pre-processing.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-023-01315-4