A data-driven mixed integer programming approach for joint chance-constrained optimal power flow under uncertainty
This paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates a comprehensive evaluation of system-wide risk without de...
Saved in:
| Published in: | International journal of machine learning and cybernetics Vol. 16; no. 2; pp. 1111 - 1127 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1868-8071, 1868-808X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates a comprehensive evaluation of system-wide risk without decomposing joint chance constraints into individual constraints, thus preventing overly conservative solutions and ensuring robust system security. A significant innovation in our method is the use of historical data to form a sample average approximation that directly informs the MIP model, bypassing the need for distributional assumptions to enhance solution robustness. Additionally, we implement a model improvement strategy to reduce the computational burden, making our method more scalable for large-scale power systems. Our approach is validated against benchmark systems, i.e., IEEE 14-, 57- and 118-bus systems, demonstrating superior performance in terms of cost-efficiency and robustness, with lower computational demand compared to existing methods. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1868-8071 1868-808X |
| DOI: | 10.1007/s13042-024-02325-x |