A data-driven mixed integer programming approach for joint chance-constrained optimal power flow under uncertainty

This paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates a comprehensive evaluation of system-wide risk without de...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of machine learning and cybernetics Ročník 16; číslo 2; s. 1111 - 1127
Hlavní autori: Qin, James Ciyu, Jiang, Rujun, Mo, Huadong, Dong, Daoyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2025
Springer Nature B.V
Predmet:
ISSN:1868-8071, 1868-808X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates a comprehensive evaluation of system-wide risk without decomposing joint chance constraints into individual constraints, thus preventing overly conservative solutions and ensuring robust system security. A significant innovation in our method is the use of historical data to form a sample average approximation that directly informs the MIP model, bypassing the need for distributional assumptions to enhance solution robustness. Additionally, we implement a model improvement strategy to reduce the computational burden, making our method more scalable for large-scale power systems. Our approach is validated against benchmark systems, i.e., IEEE 14-, 57- and 118-bus systems, demonstrating superior performance in terms of cost-efficiency and robustness, with lower computational demand compared to existing methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-024-02325-x