Data-driven nonlinear parametric model order reduction framework using deep hierarchical variational autoencoder

A data-driven parametric model order reduction (MOR) method using a deep artificial neural network is proposed. The present network, a least-squares hierarchical variational autoencoder (LSH-VAE), is capable of performing nonlinear MOR for the parametric interpolation of a nonlinear dynamic system w...

Full description

Saved in:
Bibliographic Details
Published in:Engineering with computers Vol. 40; no. 4; pp. 2385 - 2400
Main Authors: Lee, SiHun, Lee, Sangmin, Jang, Kijoo, Cho, Haeseong, Shin, SangJoon
Format: Journal Article
Language:English
Published: London Springer London 01.08.2024
Springer Nature B.V
Subjects:
ISSN:0177-0667, 1435-5663
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first