Layers and matroids for the traveling salesman’s paths
Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasin...
Saved in:
| Published in: | Operations research letters Vol. 46; no. 1; pp. 60 - 63 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2018
Elsevier |
| Subjects: | |
| ISSN: | 0167-6377, 1872-7468 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasingly restrictive matroids. A strongly polynomial, combinatorial algorithm follows for finding this convex combination, which is a new tool offering polyhedral insight, already instrumental in recent results for the s−t path TSP. |
|---|---|
| AbstractList | Gottschalk and Vygen proved that every solution of the well-known subtour elimination linear program for traveling salesman paths is a convex combination of a set of more and more restrictive "generalized Gao trees" of the underlying graph. In this paper we give a short proof of this, as a {\em layered} convex combination of bases of a sequence of more and more restrictive matroids. Our proof implies (via the matroid partition theorem) a strongly-polynomial combinatorial algorithm for finding this convex combination. This is a new connection of the TSP to matroids, offering also a new polyhedral insight. Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more restrictive “generalized Gao-trees”. We give a short proof of this fact, as a layered convex combination of bases of a sequence of increasingly restrictive matroids. A strongly polynomial, combinatorial algorithm follows for finding this convex combination, which is a new tool offering polyhedral insight, already instrumental in recent results for the s−t path TSP. |
| Author | Schalekamp, Frans Sebő, András Traub, Vera van Zuylen, Anke |
| Author_xml | – sequence: 1 givenname: Frans surname: Schalekamp fullname: Schalekamp, Frans email: fms9@cornell.edu organization: School of Operations Research and Information Engineering, Department of Computer Science, Cornell University, Ithaca NY, USA – sequence: 2 givenname: András surname: Sebő fullname: Sebő, András email: andras.sebo@grenoble-inp.fr organization: Optimisation Combinatoire (G-SCOP), CNRS, Univ. Grenoble Alpes, Grenoble, France – sequence: 3 givenname: Vera surname: Traub fullname: Traub, Vera email: traub@or.uni-bonn.de organization: Research Institute for Discrete Mathematics, University of Bonn, Bonn, Germany – sequence: 4 givenname: Anke surname: van Zuylen fullname: van Zuylen, Anke email: anke@wm.edu organization: Department of Mathematics, College of William & Mary, Williamsburg VA, USA |
| BackLink | https://hal.science/hal-01592515$$DView record in HAL |
| BookMark | eNp9kLFOwzAQhi1UJNrCA7BlZUi4Sxo7EVNVAUWKxAKz5dpn6iqNKzuq1I3X4PV4ElIVFoZOJ53-707_N2GjznfE2C1ChoD8fpP50GY5oMgQM4D8go2xEnkqZrwasfGQESkvhLhikxg3ACAqrMasatSBQkxUZ5Kt6oN3JibWh6RfU9IHtafWdR9JVC3Freq-P79islP9Ol6zS6vaSDe_c8renx7fFsu0eX1-WcybVBe86NPSGGPRFAa4URagXgFZWgmYYV1jrmlWKNA255zb0tqS6lrlSJWAkkzBdTFld6e7a9XKXXBbFQ7SKyeX80Yed4BlnZdY7nHIilNWBx9jICu161XvfDc0ca1EkEdZciMHWfIoSyLKQdZA4j_y79U55uHE0FB_7yjIqB11mowLpHtpvDtD_wDiwoT3 |
| CitedBy_id | crossref_primary_10_1016_j_orl_2020_09_009 crossref_primary_10_1016_j_orl_2019_02_005 crossref_primary_10_1145_3326123 |
| Cites_doi | 10.1007/978-3-319-33461-5_11 10.1016/j.orl.2013.08.006 10.1016/0095-8956(84)90023-6 10.1109/FOCS.2006.48 10.1109/FOCS.2016.21 10.1145/2818310 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.orl.2017.11.002 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Mathematics Computer Science |
| EISSN | 1872-7468 |
| EndPage | 63 |
| ExternalDocumentID | oai:HAL:hal-01592515v1 10_1016_j_orl_2017_11_002 S0167637717302699 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29N 4.4 457 4G. 4R4 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDS SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 WH7 WUQ XPP XSW ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c363t-5dddf1d3d06daf009b0efeb70419912ce43a0cf2666f5ff5e99a21e8705ed36c3 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425203900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-6377 |
| IngestDate | Tue Oct 14 20:55:26 EDT 2025 Sat Nov 29 02:30:18 EST 2025 Tue Nov 18 22:15:41 EST 2025 Fri Feb 23 02:30:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Christofides’ heuristic Polyhedra Matroid partition Approximation algorithm Path traveling salesman problem (TSP) Spanning tree |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-5dddf1d3d06daf009b0efeb70419912ce43a0cf2666f5ff5e99a21e8705ed36c3 |
| PageCount | 4 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01592515v1 crossref_citationtrail_10_1016_j_orl_2017_11_002 crossref_primary_10_1016_j_orl_2017_11_002 elsevier_sciencedirect_doi_10_1016_j_orl_2017_11_002 |
| PublicationCentury | 2000 |
| PublicationDate | January 2018 2018-01-00 2018 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Operations research letters |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Gao (b4) 2013; 41 Edmonds (b3) 1968; vol. 11 A. Sebő, A. van Zuylen, The salesman’s improved paths: a 3/2 + 1/34 approximation, in: Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, 2016, pp. 118–127. C. Gottschalk, J. Vygen, Better s-t-tours by Gao trees, in: Proceedings of the 18th International Conference on Integer Programming and Combinatorial Optimization, IPCO, 2016, pp. 126–137. Cunningham (b2) 1984; 36 Schrijver (b7) 2003 Traub, Vygen (b9) 2018 M. Goemans, Minimum bounded degree spanning trees, in: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, 2006,pp. 273–282. An, Kleinberg, Shmoys (b1) 2015; 62 Traub (10.1016/j.orl.2017.11.002_b9) 2018 Schrijver (10.1016/j.orl.2017.11.002_b7) 2003 Gao (10.1016/j.orl.2017.11.002_b4) 2013; 41 10.1016/j.orl.2017.11.002_b5 10.1016/j.orl.2017.11.002_b6 Edmonds (10.1016/j.orl.2017.11.002_b3) 1968; vol. 11 10.1016/j.orl.2017.11.002_b8 Cunningham (10.1016/j.orl.2017.11.002_b2) 1984; 36 An (10.1016/j.orl.2017.11.002_b1) 2015; 62 |
| References_xml | – volume: 62 start-page: 34 year: 2015 ident: b1 article-title: Improving Christofides’ algorithm for the s-t path TSP publication-title: J. ACM – reference: A. Sebő, A. van Zuylen, The salesman’s improved paths: a 3/2 + 1/34 approximation, in: Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, 2016, pp. 118–127. – volume: 36 start-page: 161 year: 1984 end-page: 188 ident: b2 article-title: Testing membership in matroid polyhedra publication-title: J. Combin. Theory Ser. B – year: 2003 ident: b7 publication-title: Combinatorial Optimization - Polyhedra and Efficiency – year: 2018 ident: b9 article-title: Approaching publication-title: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA – volume: 41 start-page: 615 year: 2013 end-page: 617 ident: b4 article-title: An LP-based 3/2-approximation algorithm for the s-t path graph Traveling Salesman Problem publication-title: Oper. Res. Lett. – reference: M. Goemans, Minimum bounded degree spanning trees, in: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, 2006,pp. 273–282. – volume: vol. 11 start-page: 335 year: 1968 end-page: 345 ident: b3 publication-title: Matroid Partition – reference: C. Gottschalk, J. Vygen, Better s-t-tours by Gao trees, in: Proceedings of the 18th International Conference on Integer Programming and Combinatorial Optimization, IPCO, 2016, pp. 126–137. – ident: 10.1016/j.orl.2017.11.002_b6 doi: 10.1007/978-3-319-33461-5_11 – volume: 41 start-page: 615 issue: 6 year: 2013 ident: 10.1016/j.orl.2017.11.002_b4 article-title: An LP-based 3/2-approximation algorithm for the s-t path graph Traveling Salesman Problem publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2013.08.006 – volume: 36 start-page: 161 year: 1984 ident: 10.1016/j.orl.2017.11.002_b2 article-title: Testing membership in matroid polyhedra publication-title: J. Combin. Theory Ser. B doi: 10.1016/0095-8956(84)90023-6 – year: 2018 ident: 10.1016/j.orl.2017.11.002_b9 article-title: Approaching 32 for the s-t-path TSP – ident: 10.1016/j.orl.2017.11.002_b5 doi: 10.1109/FOCS.2006.48 – volume: vol. 11 start-page: 335 year: 1968 ident: 10.1016/j.orl.2017.11.002_b3 – ident: 10.1016/j.orl.2017.11.002_b8 doi: 10.1109/FOCS.2016.21 – year: 2003 ident: 10.1016/j.orl.2017.11.002_b7 – volume: 62 start-page: 34 issue: 5 year: 2015 ident: 10.1016/j.orl.2017.11.002_b1 article-title: Improving Christofides’ algorithm for the s-t path TSP publication-title: J. ACM doi: 10.1145/2818310 |
| SSID | ssj0007818 |
| Score | 2.198994 |
| Snippet | Gottschalk and Vygen proved that every solution of the subtour elimination linear program for traveling salesman paths is a convex combination of more and more... Gottschalk and Vygen proved that every solution of the well-known subtour elimination linear program for traveling salesman paths is a convex combination of a... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 60 |
| SubjectTerms | Approximation algorithm Christofides’ heuristic Combinatorics Computer Science Discrete Mathematics Mathematics Matroid partition Path traveling salesman problem (TSP) Polyhedra Spanning tree |
| Title | Layers and matroids for the traveling salesman’s paths |
| URI | https://dx.doi.org/10.1016/j.orl.2017.11.002 https://hal.science/hal-01592515 |
| Volume | 46 |
| WOSCitedRecordID | wos000425203900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007818 issn: 0167-6377 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8ACsgxpciBOJLmZI4iZ3HCjZ1UMqklaniJXJiW91W2ippq_Fv8Bdzjj8WQEzjgZeoTWwr9f169_P5fIfQcxwFMilI4rOCwgIlLbjPWIp9kRUlj3FcyKby3PGQjEZ0MskOO50f9izMZkbmc3p-ni3_q6jhHghbHZ39B3G7QeEGfAahwxXEDtcrCX7IFIs2ARSranHCaxdLOFbFhnQSbjAMdeP9JLXK0z-t2zT181JUJkbOZAOavp01B38cBT8qpzDEGfu2dPzXPRLAUZMXWWgjJpvd-NA9h7dYN9tAx6JyVkGdo_q6_j4TJqfBmWg7JIz2bPxjxpi33ZWghlNsCrUIrWIpAU4f62I6VgfHbSWqCwwYc6zV3x-KXvscTncXldo_CsmuSsUaRBdWze7kD_pH-eH7_Xx4MPr469NWJOKgP4QrTJsP7CgDypdsYEW9FZEkC7poq3-wN_ng7DuhjdfY_Ta7V95EDf72Pn9jO9em1m_f8JjxHXTLLEC8vgbONuqIeQ_dtsU9PKPre-hmK1MlfPvk0vvWPbRtWtXeK5O2_PVdlGrgeQA8zwLPA-B50NFzwPMs8F7WXgO7e-jL_t743cA3VTn8Eqd45SeccxlyzIOUMwkUvQiEFAUJYhVFF5UixiwoJRC_VCZSJiLLWBQKsAuJ4Dgt8X3UnS_m4gHyQk55FsSM0pjHkhUZZZSUwOkli4ikeAcFdvby0qSsV5VTZrmNTTzNYcJzNeGwlM1hwnfQG9dlqfO1XNY4tiLJDeHURDIHmF3W7RmIzw2vErQDgHJ17wI-D6_S6BG6of5B2qX3GHVX1Vo8QdfLzeqkrp4a4P0EhpKnCA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layers+and+Matroids+for+the+Traveling+Salesman%27s+Paths&rft.jtitle=Operations+research+letters&rft.au=Schalekamp%2C+Frans&rft.au=Seb%C5%91%2C+Andr%C3%A1s&rft.au=Traub%2C+Vera&rft.au=van+Zuylen%2C+Anke&rft.date=2018&rft.pub=Elsevier&rft.issn=0167-6377&rft.eissn=1872-7468&rft.volume=46&rft.spage=60&rft.epage=63&rft_id=info:doi/10.1016%2Fj.orl.2017.11.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01592515v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6377&client=summon |