Stochastic Homogenisation of Free-Discontinuity Problems

In this paper we study the stochastic homogenisation of free-discontinuity functionals . Assuming stationarity for the random volume and surface integrands, we prove the existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Archive for rational mechanics and analysis Ročník 233; číslo 2; s. 935 - 974
Hlavní autori: Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, Zeppieri, Caterina Ida
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
Predmet:
ISSN:0003-9527, 1432-0673
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we study the stochastic homogenisation of free-discontinuity functionals . Assuming stationarity for the random volume and surface integrands, we prove the existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establishing a connection between the deterministic convergence of the functionals at any fixed realisation and the pointwise Subadditive Ergodic Theorem by Akcoglou and Krengel, we characterise the limit volume and surface integrands in terms of asymptotic cell formulas.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-019-01372-x