Stochastic Homogenisation of Free-Discontinuity Problems
In this paper we study the stochastic homogenisation of free-discontinuity functionals . Assuming stationarity for the random volume and surface integrands, we prove the existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establis...
Gespeichert in:
| Veröffentlicht in: | Archive for rational mechanics and analysis Jg. 233; H. 2; S. 935 - 974 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0003-9527, 1432-0673 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we study the stochastic homogenisation of
free-discontinuity functionals
. Assuming stationarity for the random volume and surface integrands, we prove the existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establishing a connection between the deterministic convergence of the functionals at any fixed realisation and the pointwise Subadditive Ergodic Theorem by Akcoglou and Krengel, we characterise the limit volume and surface integrands in terms of asymptotic cell formulas. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0003-9527 1432-0673 |
| DOI: | 10.1007/s00205-019-01372-x |