The Levi-Civita equation in function classes

Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem  A ), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G , then every element of V is an exponential polynomial. More precisely, every element o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aequationes mathematicae Ročník 94; číslo 4; s. 689 - 701
Hlavný autor: Laczkovich, Miklós
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.08.2020
Springer Nature B.V
Predmet:
ISSN:0001-9054, 1420-8903
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem  A ), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G , then every element of V is an exponential polynomial. More precisely, every element of V is of the form ∑ i = 1 n p i · m i , where m 1 , … , m n are exponentials belonging to V , and p 1 , … , p n are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra A of complex valued functions such that whenever an exponential m belongs to A , then m - 1 ∈ A . As special cases we find that Theorem  A remains valid even if the topology on G is not compatible with the operation on G , or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary σ -algebra. We give two proofs of the result. The first is based on Theorem  A . The second proof is independent, and seems to be more elementary than the existing proofs of Theorem  A .
AbstractList Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G , then every element of V is an exponential polynomial. More precisely, every element of V is of the form $$\sum _{i=1}^np_i \cdot m_i$$ ∑ i = 1 n p i · m i , where $$m_1 ,\ldots ,m_n$$ m 1 , … , m n are exponentials belonging to V , and $$p_1 ,\ldots ,p_n$$ p 1 , … , p n are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra $${{\mathcal {A}}}$$ A of complex valued functions such that whenever an exponential m belongs to $${{\mathcal {A}}}$$ A , then $$m^{-1}\in {{\mathcal {A}}}$$ m - 1 ∈ A . As special cases we find that Theorem A remains valid even if the topology on G is not compatible with the operation on G , or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary $$\sigma $$ σ -algebra. We give two proofs of the result. The first is based on Theorem A. The second proof is independent, and seems to be more elementary than the existing proofs of Theorem A.
Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G, then every element of V is an exponential polynomial. More precisely, every element of V is of the form ∑i=1npi·mi, where m1,…,mn are exponentials belonging to V, and p1,…,pn are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra A of complex valued functions such that whenever an exponential m belongs to A, then m-1∈A. As special cases we find that Theorem A remains valid even if the topology on G is not compatible with the operation on G, or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary σ-algebra. We give two proofs of the result. The first is based on Theorem A. The second proof is independent, and seems to be more elementary than the existing proofs of Theorem A.
Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem  A ), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G , then every element of V is an exponential polynomial. More precisely, every element of V is of the form ∑ i = 1 n p i · m i , where m 1 , … , m n are exponentials belonging to V , and p 1 , … , p n are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra A of complex valued functions such that whenever an exponential m belongs to A , then m - 1 ∈ A . As special cases we find that Theorem  A remains valid even if the topology on G is not compatible with the operation on G , or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary σ -algebra. We give two proofs of the result. The first is based on Theorem  A . The second proof is independent, and seems to be more elementary than the existing proofs of Theorem  A .
Author Laczkovich, Miklós
Author_xml – sequence: 1
  givenname: Miklós
  surname: Laczkovich
  fullname: Laczkovich, Miklós
  email: laczk@caesar.elte.hu
  organization: Eötvös Loránd University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LXo1OPnY3OUrxCwpe6jlk00RTarZNdgv-e7NdQfDQ08ww88zM-87QJLTBInRN4I4A1PcJAAhgIBIDVKLC5AxNCaeAhQQ2QdOhjyWU_ALNUtrkitY1m6Lb1actlvbg8cIffKcLu-9159tQ-FC4PphjbrY6JZsu0bnT22SvfuMcvT89rhYvePn2_Lp4WGLDKtZhLtela0rNnLaMV45LSoCYmpbAgIs1h0o2VHLLS2KhqtdGOsIb3kApKG0Em6Obce8utvvepk5t2j6GfFJRzrI-QQjJU3ScMrFNKVqndtF_6fitCKjBFTW6orIr6uiKGiDxDzJZ9SCyi9pvT6NsRFO-Ez5s_PvqBPUDpfR1oQ
CitedBy_id crossref_primary_10_1007_s00233_021_10211_z
crossref_primary_10_1007_s00233_023_10381_y
crossref_primary_10_1007_s00025_020_01274_5
crossref_primary_10_1007_s00233_021_10248_0
Cites_doi 10.1017/CBO9781139086578
10.2140/pjm.1982.103.583
10.1007/s00010-017-0489-4
10.2140/pjm.1979.80.503
10.2307/1969386
10.2307/2315197
10.4064/ap-22-2-189-198
10.1142/1406
10.5486/PMD.2013.5768
10.2140/pjm.1970.32.333
10.1007/s10474-013-0385-x
10.1007/BF01836418
10.1017/S0305004107000114
10.1090/S0002-9939-1964-0169048-7
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00010-019-00686-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8903
EndPage 701
ExternalDocumentID 10_1007_s00010_019_00686_1
GrantInformation_xml – fundername: Hungarian National Foundation for Scientific Research
  grantid: K 124749
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DARCH
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-49d5fb5a3fae346f492101c72503048d4069b294e451e067dc9f14b4b05822b83
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494186600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-9054
IngestDate Fri Jul 25 19:34:35 EDT 2025
Sat Nov 29 02:57:01 EST 2025
Tue Nov 18 22:23:07 EST 2025
Fri Feb 21 02:37:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Primary 39B52
Exponential polynomials
Translational invariant subspaces of function classes
Secondary 43A45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-49d5fb5a3fae346f492101c72503048d4069b294e451e067dc9f14b4b05822b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00010-019-00686-1
PQID 2430688111
PQPubID 36840
PageCount 13
ParticipantIDs proquest_journals_2430688111
crossref_primary_10_1007_s00010_019_00686_1
crossref_citationtrail_10_1007_s00010_019_00686_1
springer_journals_10_1007_s00010_019_00686_1
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Basel
PublicationTitle Aequationes mathematicae
PublicationTitleAbbrev Aequat. Math
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References SchwartzLThéorie génerale des fonctions moyenne-périodiquesAnn. Math.19474848579292394810.2307/1969386
LaczkovichMLocal spectral synthesis on Abelian groupsActa Math. Hung.2014142313329323353510.1007/s10474-013-0385-x
EngertMFinite dimensional translation invariant subspacesPac. J. Math.19703233334327466010.2140/pjm.1970.32.333
SzékelyhidiLNote on exponential polynomialsPac. J. Math.198210358358770525110.2140/pjm.1982.103.583
AczélJDhombresJFunctional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, 311989CambridgeCambridge University Press10.1017/CBO9781139086578
LaczkovichMSzékelyhidiLSpectral synthesis on discrete Abelian groupsProc. Camb. Phil. Soc.2007143103120234097810.1017/S0305004107000114
LairdPGOn characterizations of exponential polynomialsPac. J. Math.197980250350753943110.2140/pjm.1979.80.503
Levi-CivitaTSulle funzioni che ammettono una formula d’addizione del tipo f(x+y)=∑i=1nXi(x)Yj(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x + y) = \sum _{i=1}^n X_i (x) Y_j (y)$$\end{document}Atti Accad. Nad. Lincei Rend.191322518118344.0502.03
Stone, J.J.: Exponential Polynomials on Commutative Semigroups, Appl. Math. and Stat. Lab. Technical Note No. 14, Stanford University (1960)
SzékelyhidiLA characterization of exponential polynomialsPubl. Math. Debr.2013834757771315084110.5486/PMD.2013.5768
AnselonePMKorevaarJTranslation invariant subspaces of finite dimensionProc. Am. Math. Soc.19641574775216904810.1090/S0002-9939-1964-0169048-7
McKiernanMAEquations of the form H(x∘y)=∑ifi(x)gi(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x\circ y) =\sum _i f_i (x)g_i (y)$$\end{document}Aequ. Math.197716515810.1007/BF01836418
SzékelyhidiLConvolution Type Functional Equations on Topological Abelian Groups1991SingaporeWorld Scientific10.1142/1406
LelandKOFinite dimensional translation invariant spacesAm. Math. Mon.19687575775823427110.2307/2315197
AlmiraJMShulmanEVOn certain generalizations of the Levi-Civita and Wilson functional equationsAequ. Math.2017915921931369717710.1007/s00010-017-0489-4
DjokovićDŽA representation theorem for (X1-1)(X2-1)…(Xn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_1 -1)(X_2 -1) \ldots (X_n -1)$$\end{document} and its applicationsAnn. Polon. Math.19692218919826579810.4064/ap-22-2-189-198
J Aczél (686_CR1) 1989
DŽ Djoković (686_CR4) 1969; 22
686_CR13
MA McKiernan (686_CR11) 1977; 16
L Székelyhidi (686_CR16) 2013; 83
PM Anselone (686_CR3) 1964; 15
L Schwartz (686_CR12) 1947; 48
PG Laird (686_CR8) 1979; 80
KO Leland (686_CR9) 1968; 75
M Engert (686_CR5) 1970; 32
M Laczkovich (686_CR7) 2007; 143
M Laczkovich (686_CR6) 2014; 142
T Levi-Civita (686_CR10) 1913; 22
L Székelyhidi (686_CR14) 1982; 103
JM Almira (686_CR2) 2017; 91
L Székelyhidi (686_CR15) 1991
References_xml – reference: AnselonePMKorevaarJTranslation invariant subspaces of finite dimensionProc. Am. Math. Soc.19641574775216904810.1090/S0002-9939-1964-0169048-7
– reference: SzékelyhidiLConvolution Type Functional Equations on Topological Abelian Groups1991SingaporeWorld Scientific10.1142/1406
– reference: DjokovićDŽA representation theorem for (X1-1)(X2-1)…(Xn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_1 -1)(X_2 -1) \ldots (X_n -1)$$\end{document} and its applicationsAnn. Polon. Math.19692218919826579810.4064/ap-22-2-189-198
– reference: Stone, J.J.: Exponential Polynomials on Commutative Semigroups, Appl. Math. and Stat. Lab. Technical Note No. 14, Stanford University (1960)
– reference: Levi-CivitaTSulle funzioni che ammettono una formula d’addizione del tipo f(x+y)=∑i=1nXi(x)Yj(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x + y) = \sum _{i=1}^n X_i (x) Y_j (y)$$\end{document}Atti Accad. Nad. Lincei Rend.191322518118344.0502.03
– reference: EngertMFinite dimensional translation invariant subspacesPac. J. Math.19703233334327466010.2140/pjm.1970.32.333
– reference: SchwartzLThéorie génerale des fonctions moyenne-périodiquesAnn. Math.19474848579292394810.2307/1969386
– reference: SzékelyhidiLNote on exponential polynomialsPac. J. Math.198210358358770525110.2140/pjm.1982.103.583
– reference: LelandKOFinite dimensional translation invariant spacesAm. Math. Mon.19687575775823427110.2307/2315197
– reference: LaczkovichMLocal spectral synthesis on Abelian groupsActa Math. Hung.2014142313329323353510.1007/s10474-013-0385-x
– reference: AczélJDhombresJFunctional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, 311989CambridgeCambridge University Press10.1017/CBO9781139086578
– reference: AlmiraJMShulmanEVOn certain generalizations of the Levi-Civita and Wilson functional equationsAequ. Math.2017915921931369717710.1007/s00010-017-0489-4
– reference: McKiernanMAEquations of the form H(x∘y)=∑ifi(x)gi(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x\circ y) =\sum _i f_i (x)g_i (y)$$\end{document}Aequ. Math.197716515810.1007/BF01836418
– reference: LaczkovichMSzékelyhidiLSpectral synthesis on discrete Abelian groupsProc. Camb. Phil. Soc.2007143103120234097810.1017/S0305004107000114
– reference: LairdPGOn characterizations of exponential polynomialsPac. J. Math.197980250350753943110.2140/pjm.1979.80.503
– reference: SzékelyhidiLA characterization of exponential polynomialsPubl. Math. Debr.2013834757771315084110.5486/PMD.2013.5768
– ident: 686_CR13
– volume-title: Functional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, 31
  year: 1989
  ident: 686_CR1
  doi: 10.1017/CBO9781139086578
– volume: 103
  start-page: 583
  year: 1982
  ident: 686_CR14
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1982.103.583
– volume: 91
  start-page: 921
  issue: 5
  year: 2017
  ident: 686_CR2
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-017-0489-4
– volume: 80
  start-page: 503
  issue: 2
  year: 1979
  ident: 686_CR8
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1979.80.503
– volume: 48
  start-page: 857
  issue: 4
  year: 1947
  ident: 686_CR12
  publication-title: Ann. Math.
  doi: 10.2307/1969386
– volume: 75
  start-page: 757
  year: 1968
  ident: 686_CR9
  publication-title: Am. Math. Mon.
  doi: 10.2307/2315197
– volume: 22
  start-page: 181
  issue: 5
  year: 1913
  ident: 686_CR10
  publication-title: Atti Accad. Nad. Lincei Rend.
– volume: 22
  start-page: 189
  year: 1969
  ident: 686_CR4
  publication-title: Ann. Polon. Math.
  doi: 10.4064/ap-22-2-189-198
– volume-title: Convolution Type Functional Equations on Topological Abelian Groups
  year: 1991
  ident: 686_CR15
  doi: 10.1142/1406
– volume: 83
  start-page: 757
  issue: 4
  year: 2013
  ident: 686_CR16
  publication-title: Publ. Math. Debr.
  doi: 10.5486/PMD.2013.5768
– volume: 32
  start-page: 333
  year: 1970
  ident: 686_CR5
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.32.333
– volume: 142
  start-page: 313
  year: 2014
  ident: 686_CR6
  publication-title: Acta Math. Hung.
  doi: 10.1007/s10474-013-0385-x
– volume: 16
  start-page: 51
  year: 1977
  ident: 686_CR11
  publication-title: Aequ. Math.
  doi: 10.1007/BF01836418
– volume: 143
  start-page: 103
  year: 2007
  ident: 686_CR7
  publication-title: Proc. Camb. Phil. Soc.
  doi: 10.1017/S0305004107000114
– volume: 15
  start-page: 747
  year: 1964
  ident: 686_CR3
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1964-0169048-7
SSID ssj0012773
Score 2.211024
Snippet Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem  A ), if V is a finite dimensional translation invariant linear...
Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space...
Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 689
SubjectTerms Analysis
Combinatorics
Continuity (mathematics)
Functions (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Theorems
Topology
Title The Levi-Civita equation in function classes
URI https://link.springer.com/article/10.1007/s00010-019-00686-1
https://www.proquest.com/docview/2430688111
Volume 94
WOSCitedRecordID wos000494186600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012773
  issn: 0001-9054
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5k9aAH3-LqKj14cwPbJmmboywuHtZFfLG30qQJLEjVbfX3O8mmXRQV9FZoEsLk8X1h5psBOKMs5pLlBYkSWRDEY0lSk8ZWnGO4VILr2AmFx8lkkk6n4saLwqom2r1xSbqbuhW7WTpig6gEcboGgm-eVYS71BZsuL17bH0HUeL9ygMbfMCZl8p8P8ZnOFpyzC9uUYc2o63_zXMbNj27DC4W22EHVnS5CxvXbWrWag_6uDGCMcIhGdq6EXmgXxfZvoNZGViUc9_Kkmpd7cPD6PJ-eEV8yQSiaExrwkTBjeQ5NbnGZTBM4JMuVAkSHYpntbA6VxkJphkPNQJVoYQJmWRywJEpyJQeQKd8LvUhBHgJapbmLA9jm7SQ5cokSE-Q8HAqTcG6EDaWy5TPJ27LWjxlbSZkZ4kMLZE5S2RhF87bPi-LbBq_tu41C5L5k1VlOBdbJwdn14V-swDL3z-PdvS35sewHtmntYv160Gnnr_pE1hT7_Wsmp-6HfcBKqvKmA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7IFNQH7-J0ah98c4G1TXp5lOGY2A3RKXsLTZrAYFRdp7_fk6ztUFTQt0KTEE4u5wvnfN8BuPBpwARNM-KFIiPojwWJdBQYco5mQsZMBZYonITDYTQex3clKayost2rkKS9qWuym4EjJokqJpbXQPDNs0rRYxnF_PuHpzp24IVlXLljkg8YLaky34_x2R0tMeaXsKj1Nr3t_81zB7ZKdOlcLbbDLqyofA82B7U0a7EPbdwYToLukHRN3YjUUa8LtW9nkjvGy9lvaUC1Kg7gsXc96vZJWTKBSD_w54TGGdOCpb5OFS6DpjE-6VwZItDx8axmhucqvJgqylyFjiqTsXapoKLDECmIyD-ERv6cqyNw8BJUNEpp6gZGtJCmUocITxDwMF_ojDbBrSzHZaknbspaTHmthGwtwdES3FqCu024rPu8LNQ0fm3dqhaElyer4DgXUycHZ9eEdrUAy98_j3b8t-bnsN4fDRKe3AxvT2DDM89sm_fXgsZ89qZOYU2-zyfF7Mzuvg-zf818
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5ERfTgW6xW3YM3G9rtJvs4SrUo1lLwQW9hk02gIGvtrv5-J9lHVVQQbwubDWGS7HzDzPcNwKlHfSZonJBuIBKC_liQUIe-IedoJmTElG-JwoNgOAzH42j0gcVvq92rlGTBaTAqTWnenia6XRPfDDQxBVURsRwHgvHPEjWF9CZev3us8wjdoMwxd0whAqMlbeb7OT67pjne_JIitZ6nv_H_NW_Ceok6nfPimGzBgkq3Ye22lmzNdqCFB8YZoJskPdNPInbUS6EC7kxSx3g_-ywN2FbZLjz0L-97V6RspUCk53s5oVHCtGCxp2OF26NphKGeKwMEQB7e4cTwX0U3oooyV6EDS2SkXSqo6DBEECL09mAxfU7VPjj4c1Q0jGns-kbMkMZSBwhbEAgxT-iENsCtrMhlqTNu2l088Voh2VqCoyW4tQR3G3BWfzMtVDZ-Hd2sNoeXNy7juBbTPwdX14BWtRnz1z_PdvC34SewMrro88H18OYQVrsm-rblgE1YzGev6giW5Vs-yWbH9iC-A7Ro1mA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Levi-Civita+equation+in+function+classes&rft.jtitle=Aequationes+mathematicae&rft.au=Laczkovich+Mikl%C3%B3s&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=94&rft.issue=4&rft.spage=689&rft.epage=701&rft_id=info:doi/10.1007%2Fs00010-019-00686-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon