The Levi-Civita equation in function classes
Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A ), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G , then every element of V is an exponential polynomial. More precisely, every element o...
Uložené v:
| Vydané v: | Aequationes mathematicae Ročník 94; číslo 4; s. 689 - 701 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.08.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0001-9054, 1420-8903 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Let
G
be an Abelian topological semigroup with unit. By a classical result (called Theorem
A
), if
V
is a finite dimensional translation invariant linear space of complex valued continuous functions defined on
G
, then every element of
V
is an exponential polynomial. More precisely, every element of
V
is of the form
∑
i
=
1
n
p
i
·
m
i
, where
m
1
,
…
,
m
n
are exponentials belonging to
V
, and
p
1
,
…
,
p
n
are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra
A
of complex valued functions such that whenever an exponential
m
belongs to
A
, then
m
-
1
∈
A
. As special cases we find that Theorem
A
remains valid even if the topology on
G
is not compatible with the operation on
G
, or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary
σ
-algebra. We give two proofs of the result. The first is based on Theorem
A
. The second proof is independent, and seems to be more elementary than the existing proofs of Theorem
A
. |
|---|---|
| AbstractList | Let
G
be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if
V
is a finite dimensional translation invariant linear space of complex valued continuous functions defined on
G
, then every element of
V
is an exponential polynomial. More precisely, every element of
V
is of the form
$$\sum _{i=1}^np_i \cdot m_i$$
∑
i
=
1
n
p
i
·
m
i
, where
$$m_1 ,\ldots ,m_n$$
m
1
,
…
,
m
n
are exponentials belonging to
V
, and
$$p_1 ,\ldots ,p_n$$
p
1
,
…
,
p
n
are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra
$${{\mathcal {A}}}$$
A
of complex valued functions such that whenever an exponential
m
belongs to
$${{\mathcal {A}}}$$
A
, then
$$m^{-1}\in {{\mathcal {A}}}$$
m
-
1
∈
A
. As special cases we find that Theorem A remains valid even if the topology on
G
is not compatible with the operation on
G
, or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary
$$\sigma $$
σ
-algebra. We give two proofs of the result. The first is based on Theorem A. The second proof is independent, and seems to be more elementary than the existing proofs of Theorem A. Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G, then every element of V is an exponential polynomial. More precisely, every element of V is of the form ∑i=1npi·mi, where m1,…,mn are exponentials belonging to V, and p1,…,pn are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra A of complex valued functions such that whenever an exponential m belongs to A, then m-1∈A. As special cases we find that Theorem A remains valid even if the topology on G is not compatible with the operation on G, or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary σ-algebra. We give two proofs of the result. The first is based on Theorem A. The second proof is independent, and seems to be more elementary than the existing proofs of Theorem A. Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A ), if V is a finite dimensional translation invariant linear space of complex valued continuous functions defined on G , then every element of V is an exponential polynomial. More precisely, every element of V is of the form ∑ i = 1 n p i · m i , where m 1 , … , m n are exponentials belonging to V , and p 1 , … , p n are polynomials of continuous additive functions. We generalize this statement by replacing the set of continuous functions by any algebra A of complex valued functions such that whenever an exponential m belongs to A , then m - 1 ∈ A . As special cases we find that Theorem A remains valid even if the topology on G is not compatible with the operation on G , or if the set of continuous functions is replaced by the set of measurable functions with respect to an arbitrary σ -algebra. We give two proofs of the result. The first is based on Theorem A . The second proof is independent, and seems to be more elementary than the existing proofs of Theorem A . |
| Author | Laczkovich, Miklós |
| Author_xml | – sequence: 1 givenname: Miklós surname: Laczkovich fullname: Laczkovich, Miklós email: laczk@caesar.elte.hu organization: Eötvös Loránd University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8LXo1OPnY3OUrxCwpe6jlk00RTarZNdgv-e7NdQfDQ08ww88zM-87QJLTBInRN4I4A1PcJAAhgIBIDVKLC5AxNCaeAhQQ2QdOhjyWU_ALNUtrkitY1m6Lb1actlvbg8cIffKcLu-9159tQ-FC4PphjbrY6JZsu0bnT22SvfuMcvT89rhYvePn2_Lp4WGLDKtZhLtela0rNnLaMV45LSoCYmpbAgIs1h0o2VHLLS2KhqtdGOsIb3kApKG0Em6Obce8utvvepk5t2j6GfFJRzrI-QQjJU3ScMrFNKVqndtF_6fitCKjBFTW6orIr6uiKGiDxDzJZ9SCyi9pvT6NsRFO-Ez5s_PvqBPUDpfR1oQ |
| CitedBy_id | crossref_primary_10_1007_s00233_021_10211_z crossref_primary_10_1007_s00233_023_10381_y crossref_primary_10_1007_s00025_020_01274_5 crossref_primary_10_1007_s00233_021_10248_0 |
| Cites_doi | 10.1017/CBO9781139086578 10.2140/pjm.1982.103.583 10.1007/s00010-017-0489-4 10.2140/pjm.1979.80.503 10.2307/1969386 10.2307/2315197 10.4064/ap-22-2-189-198 10.1142/1406 10.5486/PMD.2013.5768 10.2140/pjm.1970.32.333 10.1007/s10474-013-0385-x 10.1007/BF01836418 10.1017/S0305004107000114 10.1090/S0002-9939-1964-0169048-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s00010-019-00686-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1420-8903 |
| EndPage | 701 |
| ExternalDocumentID | 10_1007_s00010_019_00686_1 |
| GrantInformation_xml | – fundername: Hungarian National Foundation for Scientific Research grantid: K 124749 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DARCH DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-49d5fb5a3fae346f492101c72503048d4069b294e451e067dc9f14b4b05822b83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494186600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-9054 |
| IngestDate | Fri Jul 25 19:34:35 EDT 2025 Sat Nov 29 02:57:01 EST 2025 Tue Nov 18 22:23:07 EST 2025 Fri Feb 21 02:37:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Primary 39B52 Exponential polynomials Translational invariant subspaces of function classes Secondary 43A45 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-49d5fb5a3fae346f492101c72503048d4069b294e451e067dc9f14b4b05822b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s00010-019-00686-1 |
| PQID | 2430688111 |
| PQPubID | 36840 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2430688111 crossref_primary_10_1007_s00010_019_00686_1 crossref_citationtrail_10_1007_s00010_019_00686_1 springer_journals_10_1007_s00010_019_00686_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Basel |
| PublicationTitle | Aequationes mathematicae |
| PublicationTitleAbbrev | Aequat. Math |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | SchwartzLThéorie génerale des fonctions moyenne-périodiquesAnn. Math.19474848579292394810.2307/1969386 LaczkovichMLocal spectral synthesis on Abelian groupsActa Math. Hung.2014142313329323353510.1007/s10474-013-0385-x EngertMFinite dimensional translation invariant subspacesPac. J. Math.19703233334327466010.2140/pjm.1970.32.333 SzékelyhidiLNote on exponential polynomialsPac. J. Math.198210358358770525110.2140/pjm.1982.103.583 AczélJDhombresJFunctional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, 311989CambridgeCambridge University Press10.1017/CBO9781139086578 LaczkovichMSzékelyhidiLSpectral synthesis on discrete Abelian groupsProc. Camb. Phil. Soc.2007143103120234097810.1017/S0305004107000114 LairdPGOn characterizations of exponential polynomialsPac. J. Math.197980250350753943110.2140/pjm.1979.80.503 Levi-CivitaTSulle funzioni che ammettono una formula d’addizione del tipo f(x+y)=∑i=1nXi(x)Yj(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x + y) = \sum _{i=1}^n X_i (x) Y_j (y)$$\end{document}Atti Accad. Nad. Lincei Rend.191322518118344.0502.03 Stone, J.J.: Exponential Polynomials on Commutative Semigroups, Appl. Math. and Stat. Lab. Technical Note No. 14, Stanford University (1960) SzékelyhidiLA characterization of exponential polynomialsPubl. Math. Debr.2013834757771315084110.5486/PMD.2013.5768 AnselonePMKorevaarJTranslation invariant subspaces of finite dimensionProc. Am. Math. Soc.19641574775216904810.1090/S0002-9939-1964-0169048-7 McKiernanMAEquations of the form H(x∘y)=∑ifi(x)gi(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x\circ y) =\sum _i f_i (x)g_i (y)$$\end{document}Aequ. Math.197716515810.1007/BF01836418 SzékelyhidiLConvolution Type Functional Equations on Topological Abelian Groups1991SingaporeWorld Scientific10.1142/1406 LelandKOFinite dimensional translation invariant spacesAm. Math. Mon.19687575775823427110.2307/2315197 AlmiraJMShulmanEVOn certain generalizations of the Levi-Civita and Wilson functional equationsAequ. Math.2017915921931369717710.1007/s00010-017-0489-4 DjokovićDŽA representation theorem for (X1-1)(X2-1)…(Xn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_1 -1)(X_2 -1) \ldots (X_n -1)$$\end{document} and its applicationsAnn. Polon. Math.19692218919826579810.4064/ap-22-2-189-198 J Aczél (686_CR1) 1989 DŽ Djoković (686_CR4) 1969; 22 686_CR13 MA McKiernan (686_CR11) 1977; 16 L Székelyhidi (686_CR16) 2013; 83 PM Anselone (686_CR3) 1964; 15 L Schwartz (686_CR12) 1947; 48 PG Laird (686_CR8) 1979; 80 KO Leland (686_CR9) 1968; 75 M Engert (686_CR5) 1970; 32 M Laczkovich (686_CR7) 2007; 143 M Laczkovich (686_CR6) 2014; 142 T Levi-Civita (686_CR10) 1913; 22 L Székelyhidi (686_CR14) 1982; 103 JM Almira (686_CR2) 2017; 91 L Székelyhidi (686_CR15) 1991 |
| References_xml | – reference: AnselonePMKorevaarJTranslation invariant subspaces of finite dimensionProc. Am. Math. Soc.19641574775216904810.1090/S0002-9939-1964-0169048-7 – reference: SzékelyhidiLConvolution Type Functional Equations on Topological Abelian Groups1991SingaporeWorld Scientific10.1142/1406 – reference: DjokovićDŽA representation theorem for (X1-1)(X2-1)…(Xn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_1 -1)(X_2 -1) \ldots (X_n -1)$$\end{document} and its applicationsAnn. Polon. Math.19692218919826579810.4064/ap-22-2-189-198 – reference: Stone, J.J.: Exponential Polynomials on Commutative Semigroups, Appl. Math. and Stat. Lab. Technical Note No. 14, Stanford University (1960) – reference: Levi-CivitaTSulle funzioni che ammettono una formula d’addizione del tipo f(x+y)=∑i=1nXi(x)Yj(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x + y) = \sum _{i=1}^n X_i (x) Y_j (y)$$\end{document}Atti Accad. Nad. Lincei Rend.191322518118344.0502.03 – reference: EngertMFinite dimensional translation invariant subspacesPac. J. Math.19703233334327466010.2140/pjm.1970.32.333 – reference: SchwartzLThéorie génerale des fonctions moyenne-périodiquesAnn. Math.19474848579292394810.2307/1969386 – reference: SzékelyhidiLNote on exponential polynomialsPac. J. Math.198210358358770525110.2140/pjm.1982.103.583 – reference: LelandKOFinite dimensional translation invariant spacesAm. Math. Mon.19687575775823427110.2307/2315197 – reference: LaczkovichMLocal spectral synthesis on Abelian groupsActa Math. Hung.2014142313329323353510.1007/s10474-013-0385-x – reference: AczélJDhombresJFunctional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, 311989CambridgeCambridge University Press10.1017/CBO9781139086578 – reference: AlmiraJMShulmanEVOn certain generalizations of the Levi-Civita and Wilson functional equationsAequ. Math.2017915921931369717710.1007/s00010-017-0489-4 – reference: McKiernanMAEquations of the form H(x∘y)=∑ifi(x)gi(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x\circ y) =\sum _i f_i (x)g_i (y)$$\end{document}Aequ. Math.197716515810.1007/BF01836418 – reference: LaczkovichMSzékelyhidiLSpectral synthesis on discrete Abelian groupsProc. Camb. Phil. Soc.2007143103120234097810.1017/S0305004107000114 – reference: LairdPGOn characterizations of exponential polynomialsPac. J. Math.197980250350753943110.2140/pjm.1979.80.503 – reference: SzékelyhidiLA characterization of exponential polynomialsPubl. Math. Debr.2013834757771315084110.5486/PMD.2013.5768 – ident: 686_CR13 – volume-title: Functional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, 31 year: 1989 ident: 686_CR1 doi: 10.1017/CBO9781139086578 – volume: 103 start-page: 583 year: 1982 ident: 686_CR14 publication-title: Pac. J. Math. doi: 10.2140/pjm.1982.103.583 – volume: 91 start-page: 921 issue: 5 year: 2017 ident: 686_CR2 publication-title: Aequ. Math. doi: 10.1007/s00010-017-0489-4 – volume: 80 start-page: 503 issue: 2 year: 1979 ident: 686_CR8 publication-title: Pac. J. Math. doi: 10.2140/pjm.1979.80.503 – volume: 48 start-page: 857 issue: 4 year: 1947 ident: 686_CR12 publication-title: Ann. Math. doi: 10.2307/1969386 – volume: 75 start-page: 757 year: 1968 ident: 686_CR9 publication-title: Am. Math. Mon. doi: 10.2307/2315197 – volume: 22 start-page: 181 issue: 5 year: 1913 ident: 686_CR10 publication-title: Atti Accad. Nad. Lincei Rend. – volume: 22 start-page: 189 year: 1969 ident: 686_CR4 publication-title: Ann. Polon. Math. doi: 10.4064/ap-22-2-189-198 – volume-title: Convolution Type Functional Equations on Topological Abelian Groups year: 1991 ident: 686_CR15 doi: 10.1142/1406 – volume: 83 start-page: 757 issue: 4 year: 2013 ident: 686_CR16 publication-title: Publ. Math. Debr. doi: 10.5486/PMD.2013.5768 – volume: 32 start-page: 333 year: 1970 ident: 686_CR5 publication-title: Pac. J. Math. doi: 10.2140/pjm.1970.32.333 – volume: 142 start-page: 313 year: 2014 ident: 686_CR6 publication-title: Acta Math. Hung. doi: 10.1007/s10474-013-0385-x – volume: 16 start-page: 51 year: 1977 ident: 686_CR11 publication-title: Aequ. Math. doi: 10.1007/BF01836418 – volume: 143 start-page: 103 year: 2007 ident: 686_CR7 publication-title: Proc. Camb. Phil. Soc. doi: 10.1017/S0305004107000114 – volume: 15 start-page: 747 year: 1964 ident: 686_CR3 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1964-0169048-7 |
| SSID | ssj0012773 |
| Score | 2.211024 |
| Snippet | Let
G
be an Abelian topological semigroup with unit. By a classical result (called Theorem
A
), if
V
is a finite dimensional translation invariant linear... Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space... Let G be an Abelian topological semigroup with unit. By a classical result (called Theorem A), if V is a finite dimensional translation invariant linear space... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 689 |
| SubjectTerms | Analysis Combinatorics Continuity (mathematics) Functions (mathematics) Mathematical analysis Mathematics Mathematics and Statistics Polynomials Theorems Topology |
| Title | The Levi-Civita equation in function classes |
| URI | https://link.springer.com/article/10.1007/s00010-019-00686-1 https://www.proquest.com/docview/2430688111 |
| Volume | 94 |
| WOSCitedRecordID | wos000494186600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1420-8903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012773 issn: 0001-9054 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5k9aAH3-LqKj14cwPbJmmboywuHtZFfLG30qQJLEjVbfX3O8mmXRQV9FZoEsLk8X1h5psBOKMs5pLlBYkSWRDEY0lSk8ZWnGO4VILr2AmFx8lkkk6n4saLwqom2r1xSbqbuhW7WTpig6gEcboGgm-eVYS71BZsuL17bH0HUeL9ygMbfMCZl8p8P8ZnOFpyzC9uUYc2o63_zXMbNj27DC4W22EHVnS5CxvXbWrWag_6uDGCMcIhGdq6EXmgXxfZvoNZGViUc9_Kkmpd7cPD6PJ-eEV8yQSiaExrwkTBjeQ5NbnGZTBM4JMuVAkSHYpntbA6VxkJphkPNQJVoYQJmWRywJEpyJQeQKd8LvUhBHgJapbmLA9jm7SQ5cokSE-Q8HAqTcG6EDaWy5TPJ27LWjxlbSZkZ4kMLZE5S2RhF87bPi-LbBq_tu41C5L5k1VlOBdbJwdn14V-swDL3z-PdvS35sewHtmntYv160Gnnr_pE1hT7_Wsmp-6HfcBKqvKmA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7IFNQH7-J0ah98c4G1TXp5lOGY2A3RKXsLTZrAYFRdp7_fk6ztUFTQt0KTEE4u5wvnfN8BuPBpwARNM-KFIiPojwWJdBQYco5mQsZMBZYonITDYTQex3clKayost2rkKS9qWuym4EjJokqJpbXQPDNs0rRYxnF_PuHpzp24IVlXLljkg8YLaky34_x2R0tMeaXsKj1Nr3t_81zB7ZKdOlcLbbDLqyofA82B7U0a7EPbdwYToLukHRN3YjUUa8LtW9nkjvGy9lvaUC1Kg7gsXc96vZJWTKBSD_w54TGGdOCpb5OFS6DpjE-6VwZItDx8axmhucqvJgqylyFjiqTsXapoKLDECmIyD-ERv6cqyNw8BJUNEpp6gZGtJCmUocITxDwMF_ojDbBrSzHZaknbspaTHmthGwtwdES3FqCu024rPu8LNQ0fm3dqhaElyer4DgXUycHZ9eEdrUAy98_j3b8t-bnsN4fDRKe3AxvT2DDM89sm_fXgsZ89qZOYU2-zyfF7Mzuvg-zf818 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5ERfTgW6xW3YM3G9rtJvs4SrUo1lLwQW9hk02gIGvtrv5-J9lHVVQQbwubDWGS7HzDzPcNwKlHfSZonJBuIBKC_liQUIe-IedoJmTElG-JwoNgOAzH42j0gcVvq92rlGTBaTAqTWnenia6XRPfDDQxBVURsRwHgvHPEjWF9CZev3us8wjdoMwxd0whAqMlbeb7OT67pjne_JIitZ6nv_H_NW_Ceok6nfPimGzBgkq3Ye22lmzNdqCFB8YZoJskPdNPInbUS6EC7kxSx3g_-ywN2FbZLjz0L-97V6RspUCk53s5oVHCtGCxp2OF26NphKGeKwMEQB7e4cTwX0U3oooyV6EDS2SkXSqo6DBEECL09mAxfU7VPjj4c1Q0jGns-kbMkMZSBwhbEAgxT-iENsCtrMhlqTNu2l088Voh2VqCoyW4tQR3G3BWfzMtVDZ-Hd2sNoeXNy7juBbTPwdX14BWtRnz1z_PdvC34SewMrro88H18OYQVrsm-rblgE1YzGev6giW5Vs-yWbH9iC-A7Ro1mA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Levi-Civita+equation+in+function+classes&rft.jtitle=Aequationes+mathematicae&rft.au=Laczkovich+Mikl%C3%B3s&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=94&rft.issue=4&rft.spage=689&rft.epage=701&rft_id=info:doi/10.1007%2Fs00010-019-00686-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon |