Operators Induced by Radial Measures Acting on the Dirichlet Space

Let D be the unit disc in the complex plane. Given a positive finite Borel measure μ on the radius [0, 1), we let μ n denote the n -th moment of μ and we deal with the action on spaces of analytic functions in D of the operator of Hibert-type H μ and the operator of Cesàro-type C μ which are defined...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 78; číslo 3; s. 106
Hlavní autoři: Galanopoulos, Petros, Girela, Daniel, Mas, Alejandro, Merchán, Noel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2023
Springer Nature B.V
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let D be the unit disc in the complex plane. Given a positive finite Borel measure μ on the radius [0, 1), we let μ n denote the n -th moment of μ and we deal with the action on spaces of analytic functions in D of the operator of Hibert-type H μ and the operator of Cesàro-type C μ which are defined as follows: If f is holomorphic in D , f ( z ) = ∑ n = 0 ∞ a n z n ( z ∈ D ) , then H μ ( f ) is formally defined by H μ ( f ) ( z ) = ∑ n = 0 ∞ ∑ k = 0 ∞ μ n + k a k z n ( z ∈ D ) and C μ ( f ) is defined by C μ ( f ) ( z ) = ∑ n = 0 ∞ μ n ∑ k = 0 n a k z n ( z ∈ D ). These are natural generalizations of the classical Hilbert and Cesàro operators. A good amount of work has been devoted recently to study the action of these operators on distinct spaces of analytic functions in D . In this paper we study the action of the operators H μ and C μ on the Dirichlet space D and, more generally, on the analytic Besov spaces B p ( 1 ≤ p < ∞ ).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01887-6