A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations
A new explicit formula for the integrals of shifted Chebyshev polynomials of any degree for any fractional-order in terms of shifted Chebyshev polynomials themselves is derived. A fast and accurate algorithm is developed for the solution of linear multi-order fractional differential equations (FDEs)...
Gespeichert in:
| Veröffentlicht in: | Applied mathematical modelling Jg. 37; H. 6; S. 4245 - 4252 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.03.2013
|
| Schlagworte: | |
| ISSN: | 0307-904X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A new explicit formula for the integrals of shifted Chebyshev polynomials of any degree for any fractional-order in terms of shifted Chebyshev polynomials themselves is derived. A fast and accurate algorithm is developed for the solution of linear multi-order fractional differential equations (FDEs) by considering their integrated forms. The shifted Chebyshev spectral tau (SCT) method based on the integrals of shifted Chebyshev polynomials is applied to construct the numerical solution for such problems. The method is then tested on examples. It is shown that the SCT yields better results. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0307-904X |
| DOI: | 10.1016/j.apm.2012.08.022 |