Algebraic Connectivity of Power Graphs of Finite Cyclic Groups

The power graph P(Zn) of Zn for a finite cyclic group Zn is a simple undirected connected graph such that two distinct nodes x and y in Zn are adjacent in P(Zn) if and only if x≠y and xi=y or yi=x for some non-negative integer i. In this article, we find the Laplacian eigenvalues of P(Zn) and show t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 12; číslo 14; s. 2175
Hlavní autor: Rather, Bilal Ahmad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2024
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The power graph P(Zn) of Zn for a finite cyclic group Zn is a simple undirected connected graph such that two distinct nodes x and y in Zn are adjacent in P(Zn) if and only if x≠y and xi=y or yi=x for some non-negative integer i. In this article, we find the Laplacian eigenvalues of P(Zn) and show that P(Zn) is Laplacian integral (integer algebraic connectivity) if and only if n is either the product of two distinct primes or a prime power. That answers a conjecture by Panda, Graphs and Combinatorics, (2019).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math12142175