A Class of Multivalued Quasi-Variational Inequalities with Applications

In this paper we deal with a class of nonlinear quasi-variational inequalities involving a set-valued map and a constraint set. First, we prove that the set of weak solutions of the inequality is nonempty, weakly compact and upper semicontinuous with respect to perturbations in the data. Then, the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization Jg. 87; H. 2; S. 32
Hauptverfasser: Migórski, Stanislaw, Bai, Yunru, Dudek, Sylwia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:0095-4616, 1432-0606
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we deal with a class of nonlinear quasi-variational inequalities involving a set-valued map and a constraint set. First, we prove that the set of weak solutions of the inequality is nonempty, weakly compact and upper semicontinuous with respect to perturbations in the data. Then, the results are applied to a quasi variational-hemivariational inequality of elliptic kind. Finally, as an illustrative applications we examine a mathematical model of a nonsmooth static frictional unilateral contact problem for ideally locking materials in nonlinear elasticity.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-022-09941-5