Calmness of Linear Constraint Systems under Structured Perturbations with an Application to the Path-Following Scheme
We are concerned with finite linear constraint systems in a parametric framework where the right-hand side is an affine function of the perturbation parameter. Such structured perturbations provide a unified framework for different parametric models in the literature, as block, directional and/or pa...
Uloženo v:
| Vydáno v: | Set-valued and variational analysis Ročník 29; číslo 4; s. 839 - 860 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.12.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We are concerned with finite linear constraint systems in a parametric framework where the right-hand side is an affine function of the perturbation parameter. Such structured perturbations provide a unified framework for different parametric models in the literature, as block, directional and/or partial perturbations of both inequalities and equalities. We extend some recent results about calmness of the feasible set mapping and provide an application to the convergence of a certain path-following algorithmic scheme. We underline the fact that our formula for the calmness modulus depends only on the nominal data, which makes it computable in practice. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-021-00597-x |