Calmness of Linear Constraint Systems under Structured Perturbations with an Application to the Path-Following Scheme

We are concerned with finite linear constraint systems in a parametric framework where the right-hand side is an affine function of the perturbation parameter. Such structured perturbations provide a unified framework for different parametric models in the literature, as block, directional and/or pa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Set-valued and variational analysis Ročník 29; číslo 4; s. 839 - 860
Hlavní autori: Argáez, C., Cánovas, M.J., Parra, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.12.2021
Springer Nature B.V
Predmet:
ISSN:1877-0533, 1877-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We are concerned with finite linear constraint systems in a parametric framework where the right-hand side is an affine function of the perturbation parameter. Such structured perturbations provide a unified framework for different parametric models in the literature, as block, directional and/or partial perturbations of both inequalities and equalities. We extend some recent results about calmness of the feasible set mapping and provide an application to the convergence of a certain path-following algorithmic scheme. We underline the fact that our formula for the calmness modulus depends only on the nominal data, which makes it computable in practice.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-021-00597-x