Time-Aware Multivariate Nearest Neighbor Regression Methods for Traffic Flow Prediction

Traffic flow prediction is a fundamental functionality of intelligent transportation systems. After presenting the state of the art, we focus on nearest neighbor regression methods, which are data-driven algorithms that are effective yet simple to implement. We try to strengthen their efficacy in tw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 16; číslo 6; s. 3393 - 3402
Hlavní autoři: Dell'Acqua, Pietro, Bellotti, Francesco, Berta, Riccardo, De Gloria, Alessandro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Traffic flow prediction is a fundamental functionality of intelligent transportation systems. After presenting the state of the art, we focus on nearest neighbor regression methods, which are data-driven algorithms that are effective yet simple to implement. We try to strengthen their efficacy in two ways that are little explored in literature, i.e., by adopting a multivariate approach and by adding awareness of the time of the day. The combination of these two refinements, which represents a novelty, leads to the definition of a new class of methods that we call time-aware multivariate nearest neighbor regression (TaM-NNR) algorithms. To assess this class, we have used publicly available traffic data from a California highway. Computational results show the effectiveness of such algorithms in comparison with state-of-the-art parametric and non-parametric methods. In particular, they consistently perform better than their corresponding standard univariate versions. These facts highlight the importance of context elements in traffic prediction. The ideas presented here may be further investigated considering more context elements (e.g., weather conditions), more complex road topologies (e.g., urban networks), and different types of prediction methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2015.2453116