Fast control parameterization optimal control with improved Polak–Ribière–Polyak conjugate gradient implementation for industrial dynamic processes
This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonline...
Uložené v:
| Vydané v: | ISA transactions Ročník 123; s. 188 - 199 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Ltd
01.04.2022
|
| Predmet: | |
| ISSN: | 0019-0578, 1879-2022, 1879-2022 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak–Ribière–Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach.
•A fast CVP method for industrial dynamic process with constraints is proposed.•An improved restricted PRP approach is proposed for unconstrained NLP problem.•Test results reveal that the proposed method saves more than 90% CPU time. |
|---|---|
| AbstractList | This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak-Ribière-Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach.This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak-Ribière-Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach. This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak–Ribière–Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach. •A fast CVP method for industrial dynamic process with constraints is proposed.•An improved restricted PRP approach is proposed for unconstrained NLP problem.•Test results reveal that the proposed method saves more than 90% CPU time. This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak-Ribière-Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach. |
| Author | Piao, Changhao Liu, Mingjie Chen, Xiaolei Liu, Xinggao Liu, Ping Li, Lei Hu, Qingquan |
| Author_xml | – sequence: 1 givenname: Ping surname: Liu fullname: Liu, Ping email: liuping_cqupt@cqupt.edu.cn organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 2 givenname: Qingquan surname: Hu fullname: Hu, Qingquan organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 3 givenname: Lei surname: Li fullname: Li, Lei organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 4 givenname: Mingjie surname: Liu fullname: Liu, Mingjie organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 5 givenname: Xiaolei surname: Chen fullname: Chen, Xiaolei organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 6 givenname: Changhao surname: Piao fullname: Piao, Changhao email: piaoch@cqupt.edu.cn organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China – sequence: 7 givenname: Xinggao surname: Liu fullname: Liu, Xinggao organization: State Key Laboratory of Industry Control Technology, College of Control Science & Engineering, Zhejiang University, Hangzhou 310027, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34020789$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFu1TAURS1URH8LO0AoQyYJtpM4MQMkVFFAqgRCMLYc-7m83yT-2E7RZ8QemLAE9sFOWAn-SsuAAYz89HTuffK9J-Ro9jMQ8pDRilEmnmwrjDoFXXHKWUXbinJ6h2xY38kyr_gR2VDKZEnbrj8mJzFuKaW8lf09clw3Ge56uSHfz3VMhfFzCn4sdjroCRIE_KIT-rnwu4STHv8AnzF9LHDaBX8NtnjrR3316-u3dzjgzx8B8phXe3114LfLpU5QXAZtEeZ0UI0w5Wl1dj4UONslpoD5gN3PekJTZGcDMUK8T-46PUZ4cPOekg_nL96fvSov3rx8ffb8ojS14Km0tYTOaT0YaQdrqTCaCQ2NEUa4TkhuRO_k0DhowHXWSipb0bHG2Za3jkN9Sh6vvvnypwViUhNGA-OoZ_BLVLytGeeCcZHRRzfoMkxg1S7kbMJe3aaZgacrYIKPMYBTBtfv5p5wVIyqQ3Vqq9bq1KE6RVuV9Vnc_CW-9f-P7NkqgxzSNUJQ0eS8DVgMYJKyHv9t8BuRor3K |
| CitedBy_id | crossref_primary_10_1177_00202940231201889 crossref_primary_10_1016_j_camwa_2023_12_020 crossref_primary_10_1177_01423312241288314 crossref_primary_10_3390_drones6110360 |
| Cites_doi | 10.1016/j.ejor.2016.06.019 10.1016/j.fbp.2008.03.007 10.1016/0098-1354(84)87012-X 10.3934/naco.2012.2.571 10.1016/0098-1354(94)00086-4 10.1007/s11071-014-1633-5 10.1016/j.bej.2016.03.006 10.1016/j.isatra.2019.08.069 10.1016/0009-2509(65)85002-3 10.1109/TNNLS.2018.2818127 10.1109/TAC.2018.2867507 10.1016/j.automatica.2008.06.011 10.1007/s10957-011-9918-z 10.2514/6.2013-4555 10.3934/jimo.2014.10.275 10.1021/ie00095a010 10.1016/j.compchemeng.2005.02.036 10.1016/S0098-1354(02)00234-X 10.1016/j.na.2006.02.001 10.1002/cjce.22633 10.1109/TNNLS.2019.2900510 10.1016/j.isatra.2018.10.029 10.1109/TIE.2019.2941136 10.1016/S0098-1354(97)00014-8 10.1016/S0098-1354(97)00226-3 10.1002/ceat.201800109 10.1016/j.isatra.2015.06.006 10.1002/oca.2273 10.1137/0802003 10.1016/j.neucom.2017.05.051 10.1007/s10957-014-0641-4 10.1007/s12532-018-0139-4 10.1016/j.automatica.2017.03.022 10.1016/j.ces.2005.05.028 10.1016/j.isatra.2017.12.008 10.1016/j.ins.2017.12.047 10.1016/j.jfranklin.2019.12.013 10.1093/bioinformatics/bty139 10.1016/S0098-1354(00)00566-4 10.1109/TASE.2013.2292582 10.1080/00207179.2017.1286534 10.1021/ie00043a029 10.1109/LCSYS.2018.2853648 10.1080/00207179.2018.1426882 10.1016/S0959-1524(01)00008-7 |
| ContentType | Journal Article |
| Copyright | 2021 ISA Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 ISA – notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.isatra.2021.05.020 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 199 |
| ExternalDocumentID | 34020789 10_1016_j_isatra_2021_05_020 S0019057821002755 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c362t-d39e7faabc9dbdd06ca16ae4c6c6f7692c68f9b4fe4ef7dd90956714fd525f2e3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796023400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Wed Oct 01 10:26:56 EDT 2025 Thu Apr 03 07:09:15 EDT 2025 Sat Nov 29 07:28:45 EST 2025 Tue Nov 18 22:12:04 EST 2025 Fri Feb 23 02:40:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fast computation PRP conjugate gradient method Dynamic processes Control parameterization Optimal control |
| Language | English |
| License | Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-d39e7faabc9dbdd06ca16ae4c6c6f7692c68f9b4fe4ef7dd90956714fd525f2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 34020789 |
| PQID | 2531226126 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2531226126 pubmed_primary_34020789 crossref_citationtrail_10_1016_j_isatra_2021_05_020 crossref_primary_10_1016_j_isatra_2021_05_020 elsevier_sciencedirect_doi_10_1016_j_isatra_2021_05_020 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 2022-Apr 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Loxton, Teo, Rehbock (b32) 2011; 217 Li, Yuan, Chen, Ke, Chu, Chen (b1) 2018; 29 Zavala, Biegler (b8) 2009; 45 Li, Liu (b31) 2014; 78 Chen, Vassiliadis (b39) 2003; 27 Liu, Li, Liu, Zhang (b30) 2016; 94 Shi, Xu, Tan, Kirschen, Zhang (b6) 2018; 64 Gunn, Thomas (b41) 1965; 20 Liu, Liu, Wang, Li, Ren (b13) 2018; 92 Lin, Loxton, Teo (b18) 2017; 10 Loxton, Lin, Rehbock, Teo (b29) 2012; 2 Gilbert, Nocedal (b34) 1992; 2 Maity, Mamduhi, Hirche, Johansson, Baras (b5) 2018; 3 Canto, Banga, Alonso, Vassiliadis (b7) 2002; 12 Liu, He, Gu, Xu, Zhang, Wang (b14) 2020; 99 Bell, Sargent (b45) 2000; 24 Liu, Li, Liu, Zhang (b47) 2016; 111 Liu, Li, Liu, Xiao, Wang, Yang (b26) 2018; 73 Chen, Ren, Lin, Wu, Ye (b4) 2020; 357 Lin, Loxton, Teo (b28) 2014; 10 Ren, Zhou, Xu, Wu, Chen (b3) 2019; 85 Mu, Wang, He (b21) 2017; 81 Tanartkit, Biegler (b38) 1997; 21 Li, Liu (b48) 2014; 165 Woinaroschy (b15) 2019; 42 Liu, Li, Liu (b40) 2015; 58 Conway (b11) 2012; 152 Logsdon, Biegler (b36) 1989; 28 Dadebo, Mcauley (b43) 1995; 19 Andersson, Gillis, Horn, Rawlings, Diehl (b10) 2019; 11 Xiao, Liu, Ma, Zhang (b17) 2018; 91 Biegler (b35) 1984; 8 Tsiantis, Balsa-Canto, Banga (b2) 2018; 34 Mu, Zhang (b22) 2019; 31 Schlegel, Stockmann, Binder, Marquardt (b23) 2005; 29 Hadiyanto, Esveld, Boom, Van Straten, Van Boxtel (b24) 2008; 86 Shi, Shen (b33) 2007; 66 Banga, Irizarry-Rivera, Seider (b44) 1998; 22 Wang, Mu (b20) 2017; 266 Bittner M, Bruhs P, Richter M, Holzapfel F. An automatic mesh refinement method for aircraft trajectory optimization problems. In: Proceedings of the AIAA guidance, navigation, and control conference. Boston, MA, USA; 2013. Irizarry (b46) 2005; 60 Vassiliadis, Canto, Banga (b37) 1999; 54 Chen, Du, Tianfield, Qi, He, Qian (b12) 2013; 11 Sun, Aw, Loxton, Teo (b27) 2017; 256 Hirmajer, Balsa-Canto, Banga (b42) 2010 Tanartkit, Biegler (b49) 1995; 34 Ning, Zhang, Zhang, Zhang (b16) 2018; 433 Chen, Lou, Yang, Ren, Xu (b19) 2019; 67 Liu, Li, Liu, Hu (b9) 2017; 38 Woinaroschy (10.1016/j.isatra.2021.05.020_b15) 2019; 42 Shi (10.1016/j.isatra.2021.05.020_b33) 2007; 66 Hadiyanto (10.1016/j.isatra.2021.05.020_b24) 2008; 86 Irizarry (10.1016/j.isatra.2021.05.020_b46) 2005; 60 Conway (10.1016/j.isatra.2021.05.020_b11) 2012; 152 Tsiantis (10.1016/j.isatra.2021.05.020_b2) 2018; 34 Xiao (10.1016/j.isatra.2021.05.020_b17) 2018; 91 Canto (10.1016/j.isatra.2021.05.020_b7) 2002; 12 Liu (10.1016/j.isatra.2021.05.020_b47) 2016; 111 Liu (10.1016/j.isatra.2021.05.020_b30) 2016; 94 Mu (10.1016/j.isatra.2021.05.020_b21) 2017; 81 Li (10.1016/j.isatra.2021.05.020_b48) 2014; 165 Chen (10.1016/j.isatra.2021.05.020_b4) 2020; 357 Liu (10.1016/j.isatra.2021.05.020_b13) 2018; 92 Ning (10.1016/j.isatra.2021.05.020_b16) 2018; 433 Sun (10.1016/j.isatra.2021.05.020_b27) 2017; 256 Gilbert (10.1016/j.isatra.2021.05.020_b34) 1992; 2 Loxton (10.1016/j.isatra.2021.05.020_b29) 2012; 2 Vassiliadis (10.1016/j.isatra.2021.05.020_b37) 1999; 54 Biegler (10.1016/j.isatra.2021.05.020_b35) 1984; 8 Shi (10.1016/j.isatra.2021.05.020_b6) 2018; 64 Bell (10.1016/j.isatra.2021.05.020_b45) 2000; 24 Tanartkit (10.1016/j.isatra.2021.05.020_b49) 1995; 34 Logsdon (10.1016/j.isatra.2021.05.020_b36) 1989; 28 Banga (10.1016/j.isatra.2021.05.020_b44) 1998; 22 Mu (10.1016/j.isatra.2021.05.020_b22) 2019; 31 Zavala (10.1016/j.isatra.2021.05.020_b8) 2009; 45 Liu (10.1016/j.isatra.2021.05.020_b9) 2017; 38 Maity (10.1016/j.isatra.2021.05.020_b5) 2018; 3 Liu (10.1016/j.isatra.2021.05.020_b40) 2015; 58 Dadebo (10.1016/j.isatra.2021.05.020_b43) 1995; 19 Lin (10.1016/j.isatra.2021.05.020_b18) 2017; 10 Liu (10.1016/j.isatra.2021.05.020_b14) 2020; 99 10.1016/j.isatra.2021.05.020_b25 Ren (10.1016/j.isatra.2021.05.020_b3) 2019; 85 Schlegel (10.1016/j.isatra.2021.05.020_b23) 2005; 29 Wang (10.1016/j.isatra.2021.05.020_b20) 2017; 266 Liu (10.1016/j.isatra.2021.05.020_b26) 2018; 73 Andersson (10.1016/j.isatra.2021.05.020_b10) 2019; 11 Li (10.1016/j.isatra.2021.05.020_b1) 2018; 29 Chen (10.1016/j.isatra.2021.05.020_b19) 2019; 67 Hirmajer (10.1016/j.isatra.2021.05.020_b42) 2010 Chen (10.1016/j.isatra.2021.05.020_b39) 2003; 27 Tanartkit (10.1016/j.isatra.2021.05.020_b38) 1997; 21 Chen (10.1016/j.isatra.2021.05.020_b12) 2013; 11 Loxton (10.1016/j.isatra.2021.05.020_b32) 2011; 217 Lin (10.1016/j.isatra.2021.05.020_b28) 2014; 10 Gunn (10.1016/j.isatra.2021.05.020_b41) 1965; 20 Li (10.1016/j.isatra.2021.05.020_b31) 2014; 78 |
| References_xml | – volume: 21 start-page: 735 year: 1997 end-page: 741 ident: b38 article-title: A nested, simultaneous approach for dynamic optimization problems—II: the outer problem publication-title: Comput Chem Eng – volume: 2 start-page: 21 year: 1992 end-page: 42 ident: b34 article-title: Global convergence properties of conjugate gradient methods for optimization publication-title: SIAM J Optim – volume: 27 start-page: 501 year: 2003 end-page: 525 ident: b39 article-title: Solution of general nonlinear optimization problems using the penalty/modified barrier method with the use of exact Hessians publication-title: Comput Chem Eng – volume: 92 start-page: 2015 year: 2018 end-page: 2024 ident: b13 article-title: Control variable parameterisation with penalty approach for hypersonic vehicle reentry optimisation publication-title: Internat J Control – volume: 11 start-page: 1 year: 2019 end-page: 36 ident: b10 article-title: CasADi: a software framework for nonlinear optimization and optimal control publication-title: Math Program Comput – volume: 73 start-page: 66 year: 2018 end-page: 78 ident: b26 article-title: A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems publication-title: ISA Trans – volume: 29 start-page: 1731 year: 2005 end-page: 1751 ident: b23 article-title: Dynamic optimization using adaptive control vector parameterization publication-title: Comput Chem Eng – volume: 22 start-page: 603 year: 1998 end-page: 612 ident: b44 article-title: Stochastic optimization for optimal and model-predictive control publication-title: Comput Chem Eng – volume: 42 start-page: 2393 year: 2019 end-page: 2400 ident: b15 article-title: Optimal control for chemical reactors with distributed parameters using genetic algorithms publication-title: Chem Eng Technol – volume: 91 start-page: 571 year: 2018 end-page: 581 ident: b17 article-title: An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times publication-title: Internat J Control – volume: 217 start-page: 6566 year: 2011 end-page: 6576 ident: b32 article-title: Robust suboptimal control of nonlinear systems publication-title: Appl Math Comput – volume: 29 start-page: 6113 year: 2018 end-page: 6122 ident: b1 article-title: Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems publication-title: IEEE Trans Neural Netw Learn Syst – volume: 81 start-page: 240 year: 2017 end-page: 252 ident: b21 article-title: Novel iterative neural dynamic programming for data-based approximate optimal control design publication-title: Automatica – volume: 19 start-page: 513 year: 1995 end-page: 525 ident: b43 article-title: Dynamic optimization of constrained chemical engineering problems using dynamic programming publication-title: Comput Chem Eng – volume: 45 start-page: 86 year: 2009 end-page: 93 ident: b8 article-title: The advanced-step NMPC controller: Optimality, stability and robustness publication-title: Automatica – volume: 64 start-page: 2324 year: 2018 end-page: 2339 ident: b6 article-title: Optimal battery control under cycle aging mechanisms in pay for performance settings publication-title: IEEE Trans Automat Control – year: 2010 ident: b42 article-title: DOTcvp: Dynamic Optimization Toolbox with Control Vector Parameterization Approach for Handling Continuous and Mixed-Integer Dynamic Optimization Problems – volume: 86 start-page: 130 year: 2008 end-page: 141 ident: b24 article-title: Control vector parameterization with sensitivity based refinement applied to baking optimization publication-title: Food Bioprod Proce – volume: 66 start-page: 1428 year: 2007 end-page: 1441 ident: b33 article-title: Convergence of the Polak–Ribiére–Polyak conjugate gradient method publication-title: Nonlinear Anal Theory Methods Appl – volume: 11 start-page: 1289 year: 2013 end-page: 1299 ident: b12 article-title: Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization publication-title: IEEE Trans Automat Sci Eng Optim – volume: 256 start-page: 205 year: 2017 end-page: 214 ident: b27 article-title: Chance-constrained optimization for pension fund portfolios in the presence of default risk publication-title: Eur J Oper Res – volume: 38 start-page: 586 year: 2017 end-page: 600 ident: b9 article-title: An improved smoothing technique-based control vector parameterization method for optimal control problems with inequality path constraints publication-title: Optim Control Appl Methods – volume: 67 start-page: 7841 year: 2019 end-page: 7850 ident: b19 article-title: Vibration suppression of a high-speed macro–micro integrated system using computational optimal control publication-title: IEEE Trans Ind Electron – volume: 2 start-page: 571 year: 2012 end-page: 599 ident: b29 article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results publication-title: Numer Algebra Control Optim – volume: 24 start-page: 2385 year: 2000 end-page: 2404 ident: b45 article-title: Optimal control of inequality constrained DAE systems publication-title: Comput Chem Eng – reference: Bittner M, Bruhs P, Richter M, Holzapfel F. An automatic mesh refinement method for aircraft trajectory optimization problems. In: Proceedings of the AIAA guidance, navigation, and control conference. Boston, MA, USA; 2013. – volume: 12 start-page: 243 year: 2002 end-page: 255 ident: b7 article-title: Restricted second order information for the solution of optimal control problems using control vector parameterization publication-title: J Process Control – volume: 60 start-page: 5663 year: 2005 end-page: 5681 ident: b46 article-title: A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: Applications to particulate processes and discrete dynamic systems publication-title: Chem Eng Sci – volume: 99 start-page: 199 year: 2020 end-page: 209 ident: b14 article-title: A robust cutting pattern recognition method for shearer based on least square support vector machine equipped with chaos modified particle swarm optimization and online correcting strategy publication-title: ISA Trans – volume: 85 start-page: 129 year: 2019 end-page: 140 ident: b3 article-title: Computational bilinear optimal control for a class of one-dimensional MHD flow systems publication-title: ISA Trans – volume: 3 start-page: 102 year: 2018 end-page: 107 ident: b5 article-title: Optimal LQG control under delay-dependent costly information publication-title: IEEE Control Syst Lett – volume: 8 start-page: 243 year: 1984 end-page: 247 ident: b35 article-title: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation publication-title: Comput Chem Eng – volume: 10 start-page: 275 year: 2014 end-page: 309 ident: b28 article-title: The control parameterization method for nonlinear optimal control: A survey publication-title: J Ind Manag Optim – volume: 10 start-page: 275 year: 2017 end-page: 309 ident: b18 article-title: The control parameterization method for nonlinear optimal control: A survey publication-title: J Ind Manag Optim – volume: 94 start-page: 2355 year: 2016 end-page: 2363 ident: b30 article-title: A novel fast dynamic optimization approach for complex multivariable chemical process systems publication-title: Can J Chem Eng – volume: 111 start-page: 63 year: 2016 end-page: 74 ident: b47 article-title: Novel non-uniform adaptive grid refinement control parameterization approach for biochemical processes optimization publication-title: Biochem Eng J – volume: 58 start-page: 248 year: 2015 end-page: 254 ident: b40 article-title: Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes publication-title: ISA Trans – volume: 266 start-page: 353 year: 2017 end-page: 360 ident: b20 article-title: A novel neural optimal control framework with nonlinear dynamics: Closed-loop stability and simulation verification publication-title: Neurocomputing – volume: 34 start-page: 2433 year: 2018 end-page: 2440 ident: b2 article-title: Optimality and identification of dynamic models in systems biology: an inverse optimal control framework publication-title: Bioinformatics – volume: 152 start-page: 271 year: 2012 end-page: 306 ident: b11 article-title: A survey of methods available for the numerical optimization of continuous dynamic systems publication-title: J Optim Theory Appl – volume: 28 start-page: 1628 year: 1989 end-page: 1639 ident: b36 article-title: Accurate solution of differential–algebraic optimization problems publication-title: Ind Eng Chem Res – volume: 31 start-page: 259 year: 2019 end-page: 273 ident: b22 article-title: Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties publication-title: IEEE Trans Neural Netw Learn Syst – volume: 34 start-page: 1253 year: 1995 end-page: 1266 ident: b49 article-title: Stable decomposition for dynamic optimization publication-title: Ind Eng Chem Res – volume: 357 start-page: 2830 year: 2020 end-page: 2850 ident: b4 article-title: Real-time computational optimal control of an MHD flow system with parameter uncertainty quantification publication-title: J Franklin Inst – volume: 78 start-page: 2883 year: 2014 end-page: 2895 ident: b31 article-title: Optimal control problems with incomplete and different integral time domains in the objective and constraints publication-title: Nonlinear Dyn – volume: 20 start-page: 89 year: 1965 end-page: 100 ident: b41 article-title: Mass transport and chemical reaction in multifunctional catalyst systems publication-title: Chem Eng Sci – volume: 433 start-page: 142 year: 2018 end-page: 162 ident: b16 article-title: A best-path-updating information-guided ant colony optimization algorithm publication-title: Inform Sci – volume: 54 start-page: 3851 year: 1999 end-page: 3860 ident: b37 article-title: Second-order sensitivities of general dynamic systems with application to optimal control problems publication-title: Chem Eng J – volume: 165 start-page: 678 year: 2014 end-page: 692 ident: b48 article-title: Comments on “optimal use of mixed catalysts for two successive chemical reactions” publication-title: J Optim Theory Appl – volume: 256 start-page: 205 issue: 1 year: 2017 ident: 10.1016/j.isatra.2021.05.020_b27 article-title: Chance-constrained optimization for pension fund portfolios in the presence of default risk publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2016.06.019 – volume: 86 start-page: 130 issue: 2 year: 2008 ident: 10.1016/j.isatra.2021.05.020_b24 article-title: Control vector parameterization with sensitivity based refinement applied to baking optimization publication-title: Food Bioprod Proce doi: 10.1016/j.fbp.2008.03.007 – volume: 217 start-page: 6566 issue: 2 year: 2011 ident: 10.1016/j.isatra.2021.05.020_b32 article-title: Robust suboptimal control of nonlinear systems publication-title: Appl Math Comput – volume: 8 start-page: 243 issue: 3–4 year: 1984 ident: 10.1016/j.isatra.2021.05.020_b35 article-title: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation publication-title: Comput Chem Eng doi: 10.1016/0098-1354(84)87012-X – volume: 2 start-page: 571 issue: 3 year: 2012 ident: 10.1016/j.isatra.2021.05.020_b29 article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results publication-title: Numer Algebra Control Optim doi: 10.3934/naco.2012.2.571 – volume: 19 start-page: 513 issue: 5 year: 1995 ident: 10.1016/j.isatra.2021.05.020_b43 article-title: Dynamic optimization of constrained chemical engineering problems using dynamic programming publication-title: Comput Chem Eng doi: 10.1016/0098-1354(94)00086-4 – volume: 78 start-page: 2883 issue: 4 year: 2014 ident: 10.1016/j.isatra.2021.05.020_b31 article-title: Optimal control problems with incomplete and different integral time domains in the objective and constraints publication-title: Nonlinear Dyn doi: 10.1007/s11071-014-1633-5 – volume: 111 start-page: 63 year: 2016 ident: 10.1016/j.isatra.2021.05.020_b47 article-title: Novel non-uniform adaptive grid refinement control parameterization approach for biochemical processes optimization publication-title: Biochem Eng J doi: 10.1016/j.bej.2016.03.006 – volume: 99 start-page: 199 year: 2020 ident: 10.1016/j.isatra.2021.05.020_b14 article-title: A robust cutting pattern recognition method for shearer based on least square support vector machine equipped with chaos modified particle swarm optimization and online correcting strategy publication-title: ISA Trans doi: 10.1016/j.isatra.2019.08.069 – volume: 20 start-page: 89 issue: 2 year: 1965 ident: 10.1016/j.isatra.2021.05.020_b41 article-title: Mass transport and chemical reaction in multifunctional catalyst systems publication-title: Chem Eng Sci doi: 10.1016/0009-2509(65)85002-3 – volume: 29 start-page: 6113 issue: 12 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b1 article-title: Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2818127 – volume: 64 start-page: 2324 issue: 6 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b6 article-title: Optimal battery control under cycle aging mechanisms in pay for performance settings publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2018.2867507 – volume: 45 start-page: 86 issue: 1 year: 2009 ident: 10.1016/j.isatra.2021.05.020_b8 article-title: The advanced-step NMPC controller: Optimality, stability and robustness publication-title: Automatica doi: 10.1016/j.automatica.2008.06.011 – volume: 152 start-page: 271 issue: 2 year: 2012 ident: 10.1016/j.isatra.2021.05.020_b11 article-title: A survey of methods available for the numerical optimization of continuous dynamic systems publication-title: J Optim Theory Appl doi: 10.1007/s10957-011-9918-z – ident: 10.1016/j.isatra.2021.05.020_b25 doi: 10.2514/6.2013-4555 – year: 2010 ident: 10.1016/j.isatra.2021.05.020_b42 – volume: 10 start-page: 275 issue: 1 year: 2017 ident: 10.1016/j.isatra.2021.05.020_b18 article-title: The control parameterization method for nonlinear optimal control: A survey publication-title: J Ind Manag Optim doi: 10.3934/jimo.2014.10.275 – volume: 28 start-page: 1628 issue: 11 year: 1989 ident: 10.1016/j.isatra.2021.05.020_b36 article-title: Accurate solution of differential–algebraic optimization problems publication-title: Ind Eng Chem Res doi: 10.1021/ie00095a010 – volume: 29 start-page: 1731 issue: 8 year: 2005 ident: 10.1016/j.isatra.2021.05.020_b23 article-title: Dynamic optimization using adaptive control vector parameterization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2005.02.036 – volume: 27 start-page: 501 issue: 4 year: 2003 ident: 10.1016/j.isatra.2021.05.020_b39 article-title: Solution of general nonlinear optimization problems using the penalty/modified barrier method with the use of exact Hessians publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(02)00234-X – volume: 66 start-page: 1428 issue: 6 year: 2007 ident: 10.1016/j.isatra.2021.05.020_b33 article-title: Convergence of the Polak–Ribiére–Polyak conjugate gradient method publication-title: Nonlinear Anal Theory Methods Appl doi: 10.1016/j.na.2006.02.001 – volume: 10 start-page: 275 issue: 1 year: 2014 ident: 10.1016/j.isatra.2021.05.020_b28 article-title: The control parameterization method for nonlinear optimal control: A survey publication-title: J Ind Manag Optim doi: 10.3934/jimo.2014.10.275 – volume: 94 start-page: 2355 issue: 12 year: 2016 ident: 10.1016/j.isatra.2021.05.020_b30 article-title: A novel fast dynamic optimization approach for complex multivariable chemical process systems publication-title: Can J Chem Eng doi: 10.1002/cjce.22633 – volume: 31 start-page: 259 issue: 1 year: 2019 ident: 10.1016/j.isatra.2021.05.020_b22 article-title: Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2900510 – volume: 85 start-page: 129 year: 2019 ident: 10.1016/j.isatra.2021.05.020_b3 article-title: Computational bilinear optimal control for a class of one-dimensional MHD flow systems publication-title: ISA Trans doi: 10.1016/j.isatra.2018.10.029 – volume: 67 start-page: 7841 issue: 9 year: 2019 ident: 10.1016/j.isatra.2021.05.020_b19 article-title: Vibration suppression of a high-speed macro–micro integrated system using computational optimal control publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2019.2941136 – volume: 21 start-page: 735 issue: 12 year: 1997 ident: 10.1016/j.isatra.2021.05.020_b38 article-title: A nested, simultaneous approach for dynamic optimization problems—II: the outer problem publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(97)00014-8 – volume: 22 start-page: 603 issue: 4 year: 1998 ident: 10.1016/j.isatra.2021.05.020_b44 article-title: Stochastic optimization for optimal and model-predictive control publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(97)00226-3 – volume: 42 start-page: 2393 issue: 11 year: 2019 ident: 10.1016/j.isatra.2021.05.020_b15 article-title: Optimal control for chemical reactors with distributed parameters using genetic algorithms publication-title: Chem Eng Technol doi: 10.1002/ceat.201800109 – volume: 58 start-page: 248 year: 2015 ident: 10.1016/j.isatra.2021.05.020_b40 article-title: Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes publication-title: ISA Trans doi: 10.1016/j.isatra.2015.06.006 – volume: 38 start-page: 586 issue: 4 year: 2017 ident: 10.1016/j.isatra.2021.05.020_b9 article-title: An improved smoothing technique-based control vector parameterization method for optimal control problems with inequality path constraints publication-title: Optim Control Appl Methods doi: 10.1002/oca.2273 – volume: 2 start-page: 21 issue: 1 year: 1992 ident: 10.1016/j.isatra.2021.05.020_b34 article-title: Global convergence properties of conjugate gradient methods for optimization publication-title: SIAM J Optim doi: 10.1137/0802003 – volume: 266 start-page: 353 issue: 29 year: 2017 ident: 10.1016/j.isatra.2021.05.020_b20 article-title: A novel neural optimal control framework with nonlinear dynamics: Closed-loop stability and simulation verification publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.051 – volume: 165 start-page: 678 issue: 2 year: 2014 ident: 10.1016/j.isatra.2021.05.020_b48 article-title: Comments on “optimal use of mixed catalysts for two successive chemical reactions” publication-title: J Optim Theory Appl doi: 10.1007/s10957-014-0641-4 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.isatra.2021.05.020_b10 article-title: CasADi: a software framework for nonlinear optimization and optimal control publication-title: Math Program Comput doi: 10.1007/s12532-018-0139-4 – volume: 81 start-page: 240 year: 2017 ident: 10.1016/j.isatra.2021.05.020_b21 article-title: Novel iterative neural dynamic programming for data-based approximate optimal control design publication-title: Automatica doi: 10.1016/j.automatica.2017.03.022 – volume: 60 start-page: 5663 issue: 21 year: 2005 ident: 10.1016/j.isatra.2021.05.020_b46 article-title: A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: Applications to particulate processes and discrete dynamic systems publication-title: Chem Eng Sci doi: 10.1016/j.ces.2005.05.028 – volume: 73 start-page: 66 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b26 article-title: A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems publication-title: ISA Trans doi: 10.1016/j.isatra.2017.12.008 – volume: 433 start-page: 142 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b16 article-title: A best-path-updating information-guided ant colony optimization algorithm publication-title: Inform Sci doi: 10.1016/j.ins.2017.12.047 – volume: 357 start-page: 2830 issue: 5 year: 2020 ident: 10.1016/j.isatra.2021.05.020_b4 article-title: Real-time computational optimal control of an MHD flow system with parameter uncertainty quantification publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2019.12.013 – volume: 34 start-page: 2433 issue: 14 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b2 article-title: Optimality and identification of dynamic models in systems biology: an inverse optimal control framework publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty139 – volume: 24 start-page: 2385 issue: 11 year: 2000 ident: 10.1016/j.isatra.2021.05.020_b45 article-title: Optimal control of inequality constrained DAE systems publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(00)00566-4 – volume: 11 start-page: 1289 issue: 4 year: 2013 ident: 10.1016/j.isatra.2021.05.020_b12 article-title: Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization publication-title: IEEE Trans Automat Sci Eng Optim doi: 10.1109/TASE.2013.2292582 – volume: 91 start-page: 571 issue: 3 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b17 article-title: An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times publication-title: Internat J Control doi: 10.1080/00207179.2017.1286534 – volume: 54 start-page: 3851 issue: 17 year: 1999 ident: 10.1016/j.isatra.2021.05.020_b37 article-title: Second-order sensitivities of general dynamic systems with application to optimal control problems publication-title: Chem Eng J – volume: 34 start-page: 1253 issue: 4 year: 1995 ident: 10.1016/j.isatra.2021.05.020_b49 article-title: Stable decomposition for dynamic optimization publication-title: Ind Eng Chem Res doi: 10.1021/ie00043a029 – volume: 3 start-page: 102 issue: 1 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b5 article-title: Optimal LQG control under delay-dependent costly information publication-title: IEEE Control Syst Lett doi: 10.1109/LCSYS.2018.2853648 – volume: 92 start-page: 2015 issue: 9 year: 2018 ident: 10.1016/j.isatra.2021.05.020_b13 article-title: Control variable parameterisation with penalty approach for hypersonic vehicle reentry optimisation publication-title: Internat J Control doi: 10.1080/00207179.2018.1426882 – volume: 12 start-page: 243 issue: 2 year: 2002 ident: 10.1016/j.isatra.2021.05.020_b7 article-title: Restricted second order information for the solution of optimal control problems using control vector parameterization publication-title: J Process Control doi: 10.1016/S0959-1524(01)00008-7 |
| SSID | ssj0002598 |
| Score | 2.3202274 |
| Snippet | This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 188 |
| SubjectTerms | Control parameterization Dynamic processes Fast computation Optimal control PRP conjugate gradient method |
| Title | Fast control parameterization optimal control with improved Polak–Ribière–Polyak conjugate gradient implementation for industrial dynamic processes |
| URI | https://dx.doi.org/10.1016/j.isatra.2021.05.020 https://www.ncbi.nlm.nih.gov/pubmed/34020789 https://www.proquest.com/docview/2531226126 |
| Volume | 123 |
| WOSCitedRecordID | wos000796023400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbhMxELXSFKHygGi5hUtlJB5A0UrJ3mw_RqgVRVAVKFLeVhvbizZtNiHZVOU_4B_4D36M8TXbVFHhgZdV5LU3kc7JeMZ7Zgahl0xVDEmTOCCMQ4BCcrCDEYEoJU0Zj2gomG02QY6P6XDITlqtny4X5uKcVBW9vGSz_wo1jAHYKnX2H-D2D4UB-AygwxVgh-tfAX-YL2qvQFeVvSdK8WLTLbtTMBETXROkIVEv9ckCuJ4nEOieBZ_KUalfoNO5DGDoe36m5o-X6sit-3WuVWK1WmW1516vWK4agQjT6r47M5kIVqpo3eCjzwPVnMJ1Kvd-_ftyqd1at59qvqmRjzDybdnQD5mkblmurfwA88albJ5lQBi8ksBIY38pYYG6c8VAh1HDxPZNG8Brpt-cQoy1CmquKkqFfV2TVefa1Q3gZxONfKQiZ2L6F62V3Ha3ttB2SBJG22h7cHQwfOe3eIgZqcvD1GLB61-6g267x2xyeTaFNNq1Ob2H7tqYBA8Ml3ZRS1Z76E6jUuUe2rV7wAK_soXKX99HPxTVsGUSXqcatlTzExTVsKMaXlHt9y9PM-xphh3N8FWaYaAZXtEMW5phT7MH6Mvhwembt4Ht8hFwcJ7qQERMkiLPR5yJkRC9lOf9NJcxT3lakJSFPKUFG8WFjGVBhGCqdCbpx4VIwqQIZfQQtatpJR8j3EtzUvC-iJVbLQWlksJTk6LHI05FL-qgyAGRcVsCX3ViOc-c1nGcGSQzhWTWSzJAsIMCv2pmSsDcMJ84jDPrxhr3NAOq3rDyhaNEBlZevbrLKzldLrIQtspQVftLO-iR4Yr_LY5mTzbeeYp2Vv-2Z6hdz5fyObrFL-pyMd9HW2RI9y3F_wDBbdZK |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+control+parameterization+optimal+control+with+improved+Polak-Ribi%C3%A8re-Polyak+conjugate+gradient+implementation+for+industrial+dynamic+processes&rft.jtitle=ISA+transactions&rft.au=Liu%2C+Ping&rft.au=Hu%2C+Qingquan&rft.au=Li%2C+Lei&rft.au=Liu%2C+Mingjie&rft.date=2022-04-01&rft.eissn=1879-2022&rft.volume=123&rft.spage=188&rft_id=info:doi/10.1016%2Fj.isatra.2021.05.020&rft_id=info%3Apmid%2F34020789&rft.externalDocID=34020789 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |