Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes
The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting fr...
Uloženo v:
| Vydáno v: | Modern Stochastics: Theory and Applications Ročník 11; číslo 3; s. 303 - 321 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
VTeX
2024
|
| Témata: | |
| ISSN: | 2351-6046, 2351-6054 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting from Bismut’s approach to the Malliavin calculus for jump processes. |
|---|---|
| ISSN: | 2351-6046 2351-6054 |
| DOI: | 10.15559/24-VMSTA245 |