Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes

The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting fr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Modern Stochastics: Theory and Applications Ročník 11; číslo 3; s. 303 - 321
Hlavní autori: Nakagawa, Takuya, Suzuki, Ryoichi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: VTeX 2024
Predmet:
ISSN:2351-6046, 2351-6054
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting from Bismut’s approach to the Malliavin calculus for jump processes.
ISSN:2351-6046
2351-6054
DOI:10.15559/24-VMSTA245