Multi-label LSTM autoencoder for non-intrusive appliance load monitoring

•Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms. This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inheren...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electric power systems research Ročník 199; s. 107414
Hlavní autoři: Verma, Sagar, Singh, Shikha, Majumdar, Angshul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.10.2021
Elsevier Science Ltd
Elsevier
Témata:
ISSN:0378-7796, 1873-2046
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms. This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inherently time varying. However prior multi-label classification techniques could not model this dynamical behaviour. They used off-the-shelf algorithms for classifying static signals on NILM problems. This is the first work that shows how to account for the temporal variability of input signals in a multi-label classification framework. Results on benchmark datasets like REDD and Pecan Street show considerable improvement over several state-of-the-art shallow and deep techniques.
AbstractList This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inherently time varying. However prior multi-label classification techniques could not model this dynamical behaviour. They used off-the-shelf algorithms for classifying static signals on NILM problems. This is the first work that shows how to account for the temporal variability of input signals in a multi-label classification framework. Results on benchmark datasets like REDD and Pecan Street show considerable improvement over several state-of-the-art shallow and deep techniques.
•Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms. This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inherently time varying. However prior multi-label classification techniques could not model this dynamical behaviour. They used off-the-shelf algorithms for classifying static signals on NILM problems. This is the first work that shows how to account for the temporal variability of input signals in a multi-label classification framework. Results on benchmark datasets like REDD and Pecan Street show considerable improvement over several state-of-the-art shallow and deep techniques.
ArticleNumber 107414
Author Verma, Sagar
Majumdar, Angshul
Singh, Shikha
Author_xml – sequence: 1
  givenname: Sagar
  surname: Verma
  fullname: Verma, Sagar
  organization: CentraleSupelec, University Paris Saclay, France
– sequence: 2
  givenname: Shikha
  surname: Singh
  fullname: Singh, Shikha
  organization: Indraprastha Institute of Information Technology, India
– sequence: 3
  givenname: Angshul
  surname: Majumdar
  fullname: Majumdar, Angshul
  email: angshul@iiitd.ac.in, angshulm@ece.ubc.ca
  organization: Indraprastha Institute of Information Technology, India
BackLink https://hal.science/hal-03294549$$DView record in HAL
BookMark eNp9kE1r3DAQhkVJoZu0f6AnQ045eKMvyzL0EkLSLWzIIelZjOVRq8WxXEleyL-vFpcceshphuF9ZobnnJxNYUJCvjK6ZZSp68MW5xS3nHJWBq1k8gPZMN2KmlOpzsiGilbXbdupT-Q8pQOlVHVtsyG7h2XMvh6hx7HaPz0_VLDkgJMNA8bKhViVS7WfclySP2IF8zx6mCxWY4ChegmTzyH66ddn8tHBmPDLv3pBft7fPd_u6v3j9x-3N_vaCsVzDR3ovm8bdBqkcooKOoDSXFLuHJZGQC8tgEDeqa63QFUDWvdCS6dd34kLcrXu_Q2jmaN_gfhqAnizu9mb04wK3slGdkdWspdrdo7hz4Ipm0NY4lTeM7zRrCgQuikpvqZsDClFdG9rGTUnu-ZgTnbNya5Z7RZI_wdZnyH7UEyBH99Hv60oFk1Hj9Ek64txHHxEm80Q_Hv4XyvDlv0
CitedBy_id crossref_primary_10_1109_TSG_2022_3191908
crossref_primary_10_3233_ICA_240738
crossref_primary_10_3390_ani14142021
crossref_primary_10_1016_j_egyr_2021_09_001
crossref_primary_10_3390_s22145250
crossref_primary_10_3390_s22155838
crossref_primary_10_1109_TSG_2024_3373258
crossref_primary_10_1016_j_heliyon_2024_e30666
crossref_primary_10_3233_ICA_230726
crossref_primary_10_2174_0122127976325514241001045948
crossref_primary_10_1016_j_enbuild_2023_113553
crossref_primary_10_3390_buildings12071048
crossref_primary_10_1016_j_ijepes_2023_109443
crossref_primary_10_1016_j_iot_2022_100636
crossref_primary_10_3390_ai6090213
crossref_primary_10_1016_j_epsr_2022_108673
crossref_primary_10_1016_j_scs_2022_104007
crossref_primary_10_3233_AIS_230134
crossref_primary_10_1016_j_csite_2025_106046
crossref_primary_10_3389_fnbot_2022_911469
crossref_primary_10_1016_j_enbuild_2023_113226
crossref_primary_10_1049_enc2_12118
crossref_primary_10_3390_s23042051
crossref_primary_10_3390_atmos13050686
crossref_primary_10_1016_j_apenergy_2024_123361
crossref_primary_10_1016_j_asoc_2024_112445
crossref_primary_10_1007_s12053_023_10161_1
crossref_primary_10_1109_TII_2023_3240924
crossref_primary_10_3390_en16124773
crossref_primary_10_1002_int_22876
crossref_primary_10_3390_ijerph20032696
crossref_primary_10_1049_gtd2_12776
Cites_doi 10.1109/44.31557
10.1109/TSG.2018.2815763
10.1145/2821650.2821672
10.1109/TSG.2017.2666220
10.1109/67.795138
10.1109/TSG.2016.2584581
10.1016/j.enbuild.2018.10.030
10.1109/5.192069
10.1016/j.epsr.2019.01.034
10.3390/electronics7100235
10.1016/j.epsr.2019.105961
10.1109/TII.2014.2361288
10.1609/aaai.v33i01.33011150
10.1109/TSG.2018.2865702
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Oct 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Oct 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
1XC
DOI 10.1016/j.epsr.2021.107414
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2046
ExternalDocumentID oai:HAL:hal-03294549v1
10_1016_j_epsr_2021_107414
S0378779621003953
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
1XC
ID FETCH-LOGICAL-c362t-a9a8bb75ef8a46f6030da682402ffe6823ab4caa3e2969bca065a88b384f8fb93
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685285700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Tue Oct 28 06:39:26 EDT 2025
Sun Nov 09 07:13:29 EST 2025
Sat Nov 29 07:14:57 EST 2025
Tue Nov 18 22:31:41 EST 2025
Fri Feb 23 02:42:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Non-intrusive load monitoring
LSTM
Autoencoder
Energy disaggregation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-a9a8bb75ef8a46f6030da682402ffe6823ab4caa3e2969bca065a88b384f8fb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2581069385
PQPubID 2047565
ParticipantIDs hal_primary_oai_HAL_hal_03294549v1
proquest_journals_2581069385
crossref_primary_10_1016_j_epsr_2021_107414
crossref_citationtrail_10_1016_j_epsr_2021_107414
elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107414
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
– name: Elsevier
References Hamdi, Messaoud, Bouguila (bib0021) 2020; 178
Singhal, Maggu, Majumdar (bib0017) 2019; 10
Wan, Agiomyrgiannakis, Silen, Vit (bib0023) 2017
Kelly, Knottenbelt (bib0015) 2015
Makonin, Popowich, Bajic, Gill, Bartram (bib0013) 2015
Singh, Majumdar (bib0010) 2018; 9
Drenker, Kader (bib0003) Oct. 1999; 12
Kolter, Jaakkola (bib0006) 2012
Machlev, Tolkachov, Levron, Beck (bib0020) 2020; 187
Li, Yang, Chen, Li, Zhang (bib0016) 2019; 177
Srivastava, Mansimov, Salakhudinov (bib0022) 2015
Bhotto, Makonin, Bajić (bib0007) July 2017; 64
(bib0001) 2017
Elhamifar, Sastry (bib0014) 2015
Kolter, Batra, Ng (bib0008) 2011
Miyasawa, Fujimoto, Hayashi (bib0009) 2019; 18315
Xia, Liu, Wang, Zhang, Xu (bib0025) 2019; 170
Verma, Singh, Majumdar (bib0019) 2019
Li, Dick (bib0024) 2019; 10
Shin, Joo, Yim, Lee, Moon, Rhee (bib0026) 2019
Hart (bib0005) Dec. 1992; 80
Tabatabaei, Dick, Xu (bib0011) 2017; 8
Salerno, Rabbeni (bib0018) 2018; 7
Basu, Debusschere, Bacha, Maulik, Bondyopadhyay (bib0012) 2015; 11
Darby (bib0002) 2006; 486
Hart (bib0004) 1989; 8
Miyasawa (10.1016/j.epsr.2021.107414_bib0009) 2019; 18315
Singhal (10.1016/j.epsr.2021.107414_bib0017) 2019; 10
Salerno (10.1016/j.epsr.2021.107414_bib0018) 2018; 7
Hamdi (10.1016/j.epsr.2021.107414_bib0021) 2020; 178
Srivastava (10.1016/j.epsr.2021.107414_bib0022) 2015
Li (10.1016/j.epsr.2021.107414_bib0024) 2019; 10
Hart (10.1016/j.epsr.2021.107414_bib0004) 1989; 8
Basu (10.1016/j.epsr.2021.107414_bib0012) 2015; 11
Kolter (10.1016/j.epsr.2021.107414_bib0006) 2012
Makonin (10.1016/j.epsr.2021.107414_bib0013) 2015
Elhamifar (10.1016/j.epsr.2021.107414_bib0014) 2015
(10.1016/j.epsr.2021.107414_bib0001) 2017
Li (10.1016/j.epsr.2021.107414_bib0016) 2019; 177
Bhotto (10.1016/j.epsr.2021.107414_bib0007) 2017; 64
Xia (10.1016/j.epsr.2021.107414_bib0025) 2019; 170
Verma (10.1016/j.epsr.2021.107414_bib0019) 2019
Darby (10.1016/j.epsr.2021.107414_bib0002) 2006; 486
Wan (10.1016/j.epsr.2021.107414_bib0023) 2017
Shin (10.1016/j.epsr.2021.107414_bib0026) 2019
Kolter (10.1016/j.epsr.2021.107414_bib0008) 2011
Kelly (10.1016/j.epsr.2021.107414_bib0015) 2015
Hart (10.1016/j.epsr.2021.107414_bib0005) 1992; 80
Tabatabaei (10.1016/j.epsr.2021.107414_bib0011) 2017; 8
Singh (10.1016/j.epsr.2021.107414_bib0010) 2018; 9
Drenker (10.1016/j.epsr.2021.107414_bib0003) 1999; 12
Machlev (10.1016/j.epsr.2021.107414_bib0020) 2020; 187
References_xml – year: 2017
  ident: bib0001
  article-title: U.S. energy information administration, “U.S. energy use,”
– start-page: 55
  year: 2015
  end-page: 64
  ident: bib0015
  article-title: Neural NILM: deep neural networks applied to energy disaggregation
  publication-title: ACM BuildSys
– volume: 8
  start-page: 26
  year: 2017
  end-page: 40
  ident: bib0011
  article-title: Toward Non-Intrusive Load Monitoring via Multi-Label Classification
  publication-title: IEEE Trans. Smart Grid
– start-page: 1472
  year: 2012
  end-page: 1482
  ident: bib0006
  article-title: Approximate inference in additive factorial hmms with application to energy disaggregation
  publication-title: AISTATS
– start-page: 1150
  year: 2019
  end-page: 1157
  ident: bib0026
  article-title: Subtask gated networks for non-intrusive load monitoring
  publication-title: AAAI
– volume: 12
  start-page: 47
  year: Oct. 1999
  end-page: 51
  ident: bib0003
  article-title: Nonintrusive monitoring of electric loads
  publication-title: IEEE Comput. Appl. Power
– volume: 7
  start-page: 235
  year: 2018
  ident: bib0018
  article-title: An extreme learning machine approach to effective energy disaggregation
  publication-title: Electronics
– volume: 18315
  start-page: 547
  year: 2019
  end-page: 558
  ident: bib0009
  article-title: Energy disaggregation based on smart metering data via semi-binary nonnegative matrix factorization
  publication-title: Energy Build.
– volume: 486
  start-page: 26
  year: 2006
  ident: bib0002
  article-title: The effectiveness of feedback on energy consumption
  publication-title: A Review for DEFRA of the Literature on Metering, Billing and direct Displays
– volume: 10
  start-page: 2969
  year: 2019
  end-page: 2978
  ident: bib0017
  article-title: Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning
  publication-title: IEEE Trans. Smart Grid
– volume: 10
  start-page: 4615
  year: 2019
  end-page: 4627
  ident: bib0024
  article-title: Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning
  publication-title: IEEE Trans. Smart Grid
– volume: 80
  start-page: 1870
  year: Dec. 1992
  end-page: 1891
  ident: bib0005
  article-title: Nonintrusive appliance load monitoring
  publication-title: Proc. IEEE
– volume: 177
  year: 2019
  ident: bib0016
  article-title: Multi-objective evolutionary algorithms applied to non-intrusive load monitoring
  publication-title: Electric Power Syst. Res.
– volume: 8
  start-page: 12
  year: 1989
  end-page: 16
  ident: bib0004
  article-title: Residential energy monitoring and computerized surveillance via utility power flows
  publication-title: IEEE Technol. Soc. Mag.
– start-page: 629
  year: 2015
  end-page: 635
  ident: bib0014
  article-title: Energy disaggregation via learning powerlets and sparse coding
  publication-title: AAAI
– volume: 11
  start-page: 262
  year: 2015
  end-page: 270
  ident: bib0012
  article-title: Nonintrusive load monitoring: a temporal multilabel classification approach
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1
  year: 2015
  end-page: 11
  ident: bib0013
  article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
– volume: 170
  start-page: 277
  year: 2019
  end-page: 285
  ident: bib0025
  article-title: Non-intrusive load disaggregation based on deep dilated residual network
  publication-title: Electric Power Systems Research
– start-page: 8345
  year: 2019
  end-page: 8349
  ident: bib0019
  article-title: Multi label restricted Boltzmann machine for non-intrusive load monitoring
  publication-title: IEEE ICASSP
– volume: 9
  start-page: 4669
  year: 2018
  end-page: 4678
  ident: bib0010
  article-title: Deep sparse coding for non–intrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
– volume: 187
  year: 2020
  ident: bib0020
  article-title: Dimension reduction for NILM classification based on principle component analysis
  publication-title: Electric Power Syst. Res.
– volume: 178
  year: 2020
  ident: bib0021
  article-title: A new approach of electrical appliance identification in residential buildings
  publication-title: Electric Power Syst. Res.
– start-page: 1153
  year: 2011
  end-page: 1161
  ident: bib0008
  article-title: Energy disaggregation via discriminative sparse coding
  publication-title: NIPS
– start-page: 843
  year: 2015
  end-page: 852
  ident: bib0022
  article-title: Unsupervised learning of video representations using LSTMs
  publication-title: ICML
– volume: 64
  start-page: 792
  year: July 2017
  end-page: 796
  ident: bib0007
  article-title: Load disaggregation based on aided linear integer programming
  publication-title: IEEE Trans. Circuits Syst. II: Express Briefs
– start-page: 1143
  year: 2017
  end-page: 1147
  ident: bib0023
  article-title: Google's Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-to-Sequence LSTM-Based Autoencoders
  publication-title: IEEE INTERSPEECH
– volume: 8
  start-page: 12
  issue: 2
  year: 1989
  ident: 10.1016/j.epsr.2021.107414_bib0004
  article-title: Residential energy monitoring and computerized surveillance via utility power flows
  publication-title: IEEE Technol. Soc. Mag.
  doi: 10.1109/44.31557
– volume: 10
  start-page: 2969
  issue: 3
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0017
  article-title: Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2815763
– start-page: 1
  issue: 99
  year: 2015
  ident: 10.1016/j.epsr.2021.107414_bib0013
  article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
– start-page: 55
  year: 2015
  ident: 10.1016/j.epsr.2021.107414_bib0015
  article-title: Neural NILM: deep neural networks applied to energy disaggregation
  publication-title: ACM BuildSys
  doi: 10.1145/2821650.2821672
– volume: 486
  start-page: 26
  issue: 2006
  year: 2006
  ident: 10.1016/j.epsr.2021.107414_bib0002
  article-title: The effectiveness of feedback on energy consumption
  publication-title: A Review for DEFRA of the Literature on Metering, Billing and direct Displays
– volume: 64
  start-page: 792
  issue: 7
  year: 2017
  ident: 10.1016/j.epsr.2021.107414_bib0007
  article-title: Load disaggregation based on aided linear integer programming
  publication-title: IEEE Trans. Circuits Syst. II: Express Briefs
– year: 2017
  ident: 10.1016/j.epsr.2021.107414_bib0001
– start-page: 629
  year: 2015
  ident: 10.1016/j.epsr.2021.107414_bib0014
  article-title: Energy disaggregation via learning powerlets and sparse coding
  publication-title: AAAI
– volume: 9
  start-page: 4669
  issue: 5
  year: 2018
  ident: 10.1016/j.epsr.2021.107414_bib0010
  article-title: Deep sparse coding for non–intrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2666220
– volume: 12
  start-page: 47
  issue: 4
  year: 1999
  ident: 10.1016/j.epsr.2021.107414_bib0003
  article-title: Nonintrusive monitoring of electric loads
  publication-title: IEEE Comput. Appl. Power
  doi: 10.1109/67.795138
– volume: 8
  start-page: 26
  issue: 1
  year: 2017
  ident: 10.1016/j.epsr.2021.107414_bib0011
  article-title: Toward Non-Intrusive Load Monitoring via Multi-Label Classification
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2584581
– volume: 18315
  start-page: 547
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0009
  article-title: Energy disaggregation based on smart metering data via semi-binary nonnegative matrix factorization
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.10.030
– start-page: 843
  year: 2015
  ident: 10.1016/j.epsr.2021.107414_bib0022
  article-title: Unsupervised learning of video representations using LSTMs
  publication-title: ICML
– volume: 80
  start-page: 1870
  issue: 12
  year: 1992
  ident: 10.1016/j.epsr.2021.107414_bib0005
  article-title: Nonintrusive appliance load monitoring
  publication-title: Proc. IEEE
  doi: 10.1109/5.192069
– start-page: 1153
  year: 2011
  ident: 10.1016/j.epsr.2021.107414_bib0008
  article-title: Energy disaggregation via discriminative sparse coding
  publication-title: NIPS
– volume: 178
  issue: 106037
  year: 2020
  ident: 10.1016/j.epsr.2021.107414_bib0021
  article-title: A new approach of electrical appliance identification in residential buildings
  publication-title: Electric Power Syst. Res.
– volume: 170
  start-page: 277
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0025
  article-title: Non-intrusive load disaggregation based on deep dilated residual network
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2019.01.034
– start-page: 1143
  year: 2017
  ident: 10.1016/j.epsr.2021.107414_bib0023
  article-title: Google's Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-to-Sequence LSTM-Based Autoencoders
  publication-title: IEEE INTERSPEECH
– volume: 187
  issue: 106459
  year: 2020
  ident: 10.1016/j.epsr.2021.107414_bib0020
  article-title: Dimension reduction for NILM classification based on principle component analysis
  publication-title: Electric Power Syst. Res.
– volume: 7
  start-page: 235
  issue: 10
  year: 2018
  ident: 10.1016/j.epsr.2021.107414_bib0018
  article-title: An extreme learning machine approach to effective energy disaggregation
  publication-title: Electronics
  doi: 10.3390/electronics7100235
– volume: 177
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0016
  article-title: Multi-objective evolutionary algorithms applied to non-intrusive load monitoring
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2019.105961
– volume: 11
  start-page: 262
  issue: 1
  year: 2015
  ident: 10.1016/j.epsr.2021.107414_bib0012
  article-title: Nonintrusive load monitoring: a temporal multilabel classification approach
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2361288
– start-page: 1150
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0026
  article-title: Subtask gated networks for non-intrusive load monitoring
  publication-title: AAAI
  doi: 10.1609/aaai.v33i01.33011150
– start-page: 1472
  year: 2012
  ident: 10.1016/j.epsr.2021.107414_bib0006
  article-title: Approximate inference in additive factorial hmms with application to energy disaggregation
  publication-title: AISTATS
– start-page: 8345
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0019
  article-title: Multi label restricted Boltzmann machine for non-intrusive load monitoring
  publication-title: IEEE ICASSP
– volume: 10
  start-page: 4615
  issue: 4
  year: 2019
  ident: 10.1016/j.epsr.2021.107414_bib0024
  article-title: Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2865702
SSID ssj0006975
Score 2.5058484
Snippet •Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms. This work...
This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107414
SubjectTerms Algorithms
Artificial Intelligence
Autoencoder
Computer Science
Datasets
Deep learning
Electric power
Energy consumption
Energy disaggregation
Engineering Sciences
LSTM
Monitoring systems
Non-intrusive load monitoring
Power consumption
Signal classification
Signal monitoring
Title Multi-label LSTM autoencoder for non-intrusive appliance load monitoring
URI https://dx.doi.org/10.1016/j.epsr.2021.107414
https://www.proquest.com/docview/2581069385
https://hal.science/hal-03294549
Volume 199
WOSCitedRecordID wos000685285700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEe-BhMFAaKEG9RUBsnsf0YwaYOumpSi9Q3y07itaXLqrWb9udzFztpOsQ0HnixoqR2Ut_Pd-fzfRDyGSRkFGrDAsGyXgBckgZC5CzQRinei4xWrAoUHrLRiE-n4swdF6yrcgKsLPntrVj9V1LDPSA2hs7-A7mbQeEGXAPRoQWyQ_sgwlchtQEQt1j6w_Hk1FfXm0tMV4lZI9CpEDb8wbzEYAv0GqpOsKu4geWlyv2Lao1f1QKtttlXxXLmmb_Comou_TMeOLRsYVi1C9m8tTOfq8brdwyDVcab8Wz-a9aIgVO1uL7IrX93Wp6vZ85F0Zkgwn7jzObsYk6It1gXhb0pY8IlubaslTMKhHIGx5r32upIf_Bxa1JYgEheY9LWsP8FHUdtuOlu0uxBOpZn347l8GT0Y_dpy9NwkA6hnall0KOhiGBPfAM75r2QxYJ3yF56cjT93sjvRFTpmZv_4EKtrFfg3Q_6mzrzeIZ-tXfEe6WzTF6S526z4aUWJK_Io6LcJy_qQh6e4-v75FkrK-VrMmghyEMEeS0EeYAgbwdBXoMgDxHkbRH0hvw8Ppp8HQSu4EaQgR6zCZRQXGsWF4arKDEJCIBcJRwP4Iwp4IIqHWVK0SIUidCZAv1Vca4pjww3WtAD0oEvKN4Sj9E8hGexiaC76GeCoyKkI0NNwXSSdUm_njeZuWz0WBRlKWu3w4XEuZY419LOdZf4TZ-VzcVy76_jmhzSaZNWS5QAsnv7fQLaNS_A9OsAH4n3tuDpksOatNKt_bUMY94H9FAev3vIGO_J0-1iOiQdoFrxgTzJbjbz9dVHh8rfGtmpcA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+LSTM+autoencoder+for+non-intrusive+appliance+load+monitoring&rft.jtitle=Electric+power+systems+research&rft.au=Verma%2C+Sagar&rft.au=Singh%2C+Shikha&rft.au=Majumdar%2C+Angshul&rft.date=2021-10-01&rft.pub=Elsevier&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=199&rft_id=info:doi/10.1016%2Fj.epsr.2021.107414&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03294549v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon