Multi-label LSTM autoencoder for non-intrusive appliance load monitoring
•Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms. This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inheren...
Saved in:
| Published in: | Electric power systems research Vol. 199; p. 107414 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.10.2021
Elsevier Science Ltd Elsevier |
| Subjects: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms.
This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inherently time varying. However prior multi-label classification techniques could not model this dynamical behaviour. They used off-the-shelf algorithms for classifying static signals on NILM problems. This is the first work that shows how to account for the temporal variability of input signals in a multi-label classification framework. Results on benchmark datasets like REDD and Pecan Street show considerable improvement over several state-of-the-art shallow and deep techniques. |
|---|---|
| AbstractList | This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inherently time varying. However prior multi-label classification techniques could not model this dynamical behaviour. They used off-the-shelf algorithms for classifying static signals on NILM problems. This is the first work that shows how to account for the temporal variability of input signals in a multi-label classification framework. Results on benchmark datasets like REDD and Pecan Street show considerable improvement over several state-of-the-art shallow and deep techniques. •Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms. This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are inherently time varying. However prior multi-label classification techniques could not model this dynamical behaviour. They used off-the-shelf algorithms for classifying static signals on NILM problems. This is the first work that shows how to account for the temporal variability of input signals in a multi-label classification framework. Results on benchmark datasets like REDD and Pecan Street show considerable improvement over several state-of-the-art shallow and deep techniques. |
| ArticleNumber | 107414 |
| Author | Verma, Sagar Majumdar, Angshul Singh, Shikha |
| Author_xml | – sequence: 1 givenname: Sagar surname: Verma fullname: Verma, Sagar organization: CentraleSupelec, University Paris Saclay, France – sequence: 2 givenname: Shikha surname: Singh fullname: Singh, Shikha organization: Indraprastha Institute of Information Technology, India – sequence: 3 givenname: Angshul surname: Majumdar fullname: Majumdar, Angshul email: angshul@iiitd.ac.in, angshulm@ece.ubc.ca organization: Indraprastha Institute of Information Technology, India |
| BackLink | https://hal.science/hal-03294549$$DView record in HAL |
| BookMark | eNp9kE1r3DAQhkVJoZu0f6AnQ045eKMvyzL0EkLSLWzIIelZjOVRq8WxXEleyL-vFpcceshphuF9ZobnnJxNYUJCvjK6ZZSp68MW5xS3nHJWBq1k8gPZMN2KmlOpzsiGilbXbdupT-Q8pQOlVHVtsyG7h2XMvh6hx7HaPz0_VLDkgJMNA8bKhViVS7WfclySP2IF8zx6mCxWY4ChegmTzyH66ddn8tHBmPDLv3pBft7fPd_u6v3j9x-3N_vaCsVzDR3ovm8bdBqkcooKOoDSXFLuHJZGQC8tgEDeqa63QFUDWvdCS6dd34kLcrXu_Q2jmaN_gfhqAnizu9mb04wK3slGdkdWspdrdo7hz4Ipm0NY4lTeM7zRrCgQuikpvqZsDClFdG9rGTUnu-ZgTnbNya5Z7RZI_wdZnyH7UEyBH99Hv60oFk1Hj9Ek64txHHxEm80Q_Hv4XyvDlv0 |
| CitedBy_id | crossref_primary_10_1109_TSG_2022_3191908 crossref_primary_10_3233_ICA_240738 crossref_primary_10_3390_ani14142021 crossref_primary_10_1016_j_egyr_2021_09_001 crossref_primary_10_3390_s22145250 crossref_primary_10_3390_s22155838 crossref_primary_10_1109_TSG_2024_3373258 crossref_primary_10_1016_j_heliyon_2024_e30666 crossref_primary_10_3233_ICA_230726 crossref_primary_10_2174_0122127976325514241001045948 crossref_primary_10_1016_j_enbuild_2023_113553 crossref_primary_10_3390_buildings12071048 crossref_primary_10_1016_j_ijepes_2023_109443 crossref_primary_10_1016_j_iot_2022_100636 crossref_primary_10_3390_ai6090213 crossref_primary_10_1016_j_epsr_2022_108673 crossref_primary_10_1016_j_scs_2022_104007 crossref_primary_10_3233_AIS_230134 crossref_primary_10_1016_j_csite_2025_106046 crossref_primary_10_3389_fnbot_2022_911469 crossref_primary_10_1016_j_enbuild_2023_113226 crossref_primary_10_1049_enc2_12118 crossref_primary_10_3390_s23042051 crossref_primary_10_3390_atmos13050686 crossref_primary_10_1016_j_apenergy_2024_123361 crossref_primary_10_1016_j_asoc_2024_112445 crossref_primary_10_1007_s12053_023_10161_1 crossref_primary_10_1109_TII_2023_3240924 crossref_primary_10_3390_en16124773 crossref_primary_10_1002_int_22876 crossref_primary_10_3390_ijerph20032696 crossref_primary_10_1049_gtd2_12776 |
| Cites_doi | 10.1109/44.31557 10.1109/TSG.2018.2815763 10.1145/2821650.2821672 10.1109/TSG.2017.2666220 10.1109/67.795138 10.1109/TSG.2016.2584581 10.1016/j.enbuild.2018.10.030 10.1109/5.192069 10.1016/j.epsr.2019.01.034 10.3390/electronics7100235 10.1016/j.epsr.2019.105961 10.1109/TII.2014.2361288 10.1609/aaai.v33i01.33011150 10.1109/TSG.2018.2865702 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Oct 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Oct 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M 1XC |
| DOI | 10.1016/j.epsr.2021.107414 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-2046 |
| ExternalDocumentID | oai:HAL:hal-03294549v1 10_1016_j_epsr_2021_107414 S0378779621003953 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD FR3 KR7 L7M 1XC |
| ID | FETCH-LOGICAL-c362t-a9a8bb75ef8a46f6030da682402ffe6823ab4caa3e2969bca065a88b384f8fb93 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685285700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Tue Oct 28 06:39:26 EDT 2025 Sun Nov 09 07:13:29 EST 2025 Sat Nov 29 07:14:57 EST 2025 Tue Nov 18 22:31:41 EST 2025 Fri Feb 23 02:42:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Non-intrusive load monitoring LSTM Autoencoder Energy disaggregation |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-a9a8bb75ef8a46f6030da682402ffe6823ab4caa3e2969bca065a88b384f8fb93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2581069385 |
| PQPubID | 2047565 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03294549v1 proquest_journals_2581069385 crossref_primary_10_1016_j_epsr_2021_107414 crossref_citationtrail_10_1016_j_epsr_2021_107414 elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107414 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 2021-10 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd – name: Elsevier |
| References | Hamdi, Messaoud, Bouguila (bib0021) 2020; 178 Singhal, Maggu, Majumdar (bib0017) 2019; 10 Wan, Agiomyrgiannakis, Silen, Vit (bib0023) 2017 Kelly, Knottenbelt (bib0015) 2015 Makonin, Popowich, Bajic, Gill, Bartram (bib0013) 2015 Singh, Majumdar (bib0010) 2018; 9 Drenker, Kader (bib0003) Oct. 1999; 12 Kolter, Jaakkola (bib0006) 2012 Machlev, Tolkachov, Levron, Beck (bib0020) 2020; 187 Li, Yang, Chen, Li, Zhang (bib0016) 2019; 177 Srivastava, Mansimov, Salakhudinov (bib0022) 2015 Bhotto, Makonin, Bajić (bib0007) July 2017; 64 (bib0001) 2017 Elhamifar, Sastry (bib0014) 2015 Kolter, Batra, Ng (bib0008) 2011 Miyasawa, Fujimoto, Hayashi (bib0009) 2019; 18315 Xia, Liu, Wang, Zhang, Xu (bib0025) 2019; 170 Verma, Singh, Majumdar (bib0019) 2019 Li, Dick (bib0024) 2019; 10 Shin, Joo, Yim, Lee, Moon, Rhee (bib0026) 2019 Hart (bib0005) Dec. 1992; 80 Tabatabaei, Dick, Xu (bib0011) 2017; 8 Salerno, Rabbeni (bib0018) 2018; 7 Basu, Debusschere, Bacha, Maulik, Bondyopadhyay (bib0012) 2015; 11 Darby (bib0002) 2006; 486 Hart (bib0004) 1989; 8 Miyasawa (10.1016/j.epsr.2021.107414_bib0009) 2019; 18315 Singhal (10.1016/j.epsr.2021.107414_bib0017) 2019; 10 Salerno (10.1016/j.epsr.2021.107414_bib0018) 2018; 7 Hamdi (10.1016/j.epsr.2021.107414_bib0021) 2020; 178 Srivastava (10.1016/j.epsr.2021.107414_bib0022) 2015 Li (10.1016/j.epsr.2021.107414_bib0024) 2019; 10 Hart (10.1016/j.epsr.2021.107414_bib0004) 1989; 8 Basu (10.1016/j.epsr.2021.107414_bib0012) 2015; 11 Kolter (10.1016/j.epsr.2021.107414_bib0006) 2012 Makonin (10.1016/j.epsr.2021.107414_bib0013) 2015 Elhamifar (10.1016/j.epsr.2021.107414_bib0014) 2015 (10.1016/j.epsr.2021.107414_bib0001) 2017 Li (10.1016/j.epsr.2021.107414_bib0016) 2019; 177 Bhotto (10.1016/j.epsr.2021.107414_bib0007) 2017; 64 Xia (10.1016/j.epsr.2021.107414_bib0025) 2019; 170 Verma (10.1016/j.epsr.2021.107414_bib0019) 2019 Darby (10.1016/j.epsr.2021.107414_bib0002) 2006; 486 Wan (10.1016/j.epsr.2021.107414_bib0023) 2017 Shin (10.1016/j.epsr.2021.107414_bib0026) 2019 Kolter (10.1016/j.epsr.2021.107414_bib0008) 2011 Kelly (10.1016/j.epsr.2021.107414_bib0015) 2015 Hart (10.1016/j.epsr.2021.107414_bib0005) 1992; 80 Tabatabaei (10.1016/j.epsr.2021.107414_bib0011) 2017; 8 Singh (10.1016/j.epsr.2021.107414_bib0010) 2018; 9 Drenker (10.1016/j.epsr.2021.107414_bib0003) 1999; 12 Machlev (10.1016/j.epsr.2021.107414_bib0020) 2020; 187 |
| References_xml | – year: 2017 ident: bib0001 article-title: U.S. energy information administration, “U.S. energy use,” – start-page: 55 year: 2015 end-page: 64 ident: bib0015 article-title: Neural NILM: deep neural networks applied to energy disaggregation publication-title: ACM BuildSys – volume: 8 start-page: 26 year: 2017 end-page: 40 ident: bib0011 article-title: Toward Non-Intrusive Load Monitoring via Multi-Label Classification publication-title: IEEE Trans. Smart Grid – start-page: 1472 year: 2012 end-page: 1482 ident: bib0006 article-title: Approximate inference in additive factorial hmms with application to energy disaggregation publication-title: AISTATS – start-page: 1150 year: 2019 end-page: 1157 ident: bib0026 article-title: Subtask gated networks for non-intrusive load monitoring publication-title: AAAI – volume: 12 start-page: 47 year: Oct. 1999 end-page: 51 ident: bib0003 article-title: Nonintrusive monitoring of electric loads publication-title: IEEE Comput. Appl. Power – volume: 7 start-page: 235 year: 2018 ident: bib0018 article-title: An extreme learning machine approach to effective energy disaggregation publication-title: Electronics – volume: 18315 start-page: 547 year: 2019 end-page: 558 ident: bib0009 article-title: Energy disaggregation based on smart metering data via semi-binary nonnegative matrix factorization publication-title: Energy Build. – volume: 486 start-page: 26 year: 2006 ident: bib0002 article-title: The effectiveness of feedback on energy consumption publication-title: A Review for DEFRA of the Literature on Metering, Billing and direct Displays – volume: 10 start-page: 2969 year: 2019 end-page: 2978 ident: bib0017 article-title: Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning publication-title: IEEE Trans. Smart Grid – volume: 10 start-page: 4615 year: 2019 end-page: 4627 ident: bib0024 article-title: Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning publication-title: IEEE Trans. Smart Grid – volume: 80 start-page: 1870 year: Dec. 1992 end-page: 1891 ident: bib0005 article-title: Nonintrusive appliance load monitoring publication-title: Proc. IEEE – volume: 177 year: 2019 ident: bib0016 article-title: Multi-objective evolutionary algorithms applied to non-intrusive load monitoring publication-title: Electric Power Syst. Res. – volume: 8 start-page: 12 year: 1989 end-page: 16 ident: bib0004 article-title: Residential energy monitoring and computerized surveillance via utility power flows publication-title: IEEE Technol. Soc. Mag. – start-page: 629 year: 2015 end-page: 635 ident: bib0014 article-title: Energy disaggregation via learning powerlets and sparse coding publication-title: AAAI – volume: 11 start-page: 262 year: 2015 end-page: 270 ident: bib0012 article-title: Nonintrusive load monitoring: a temporal multilabel classification approach publication-title: IEEE Trans. Ind. Inf. – start-page: 1 year: 2015 end-page: 11 ident: bib0013 article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring publication-title: IEEE Trans. Smart Grid – volume: 170 start-page: 277 year: 2019 end-page: 285 ident: bib0025 article-title: Non-intrusive load disaggregation based on deep dilated residual network publication-title: Electric Power Systems Research – start-page: 8345 year: 2019 end-page: 8349 ident: bib0019 article-title: Multi label restricted Boltzmann machine for non-intrusive load monitoring publication-title: IEEE ICASSP – volume: 9 start-page: 4669 year: 2018 end-page: 4678 ident: bib0010 article-title: Deep sparse coding for non–intrusive load monitoring publication-title: IEEE Trans. Smart Grid – volume: 187 year: 2020 ident: bib0020 article-title: Dimension reduction for NILM classification based on principle component analysis publication-title: Electric Power Syst. Res. – volume: 178 year: 2020 ident: bib0021 article-title: A new approach of electrical appliance identification in residential buildings publication-title: Electric Power Syst. Res. – start-page: 1153 year: 2011 end-page: 1161 ident: bib0008 article-title: Energy disaggregation via discriminative sparse coding publication-title: NIPS – start-page: 843 year: 2015 end-page: 852 ident: bib0022 article-title: Unsupervised learning of video representations using LSTMs publication-title: ICML – volume: 64 start-page: 792 year: July 2017 end-page: 796 ident: bib0007 article-title: Load disaggregation based on aided linear integer programming publication-title: IEEE Trans. Circuits Syst. II: Express Briefs – start-page: 1143 year: 2017 end-page: 1147 ident: bib0023 article-title: Google's Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-to-Sequence LSTM-Based Autoencoders publication-title: IEEE INTERSPEECH – volume: 8 start-page: 12 issue: 2 year: 1989 ident: 10.1016/j.epsr.2021.107414_bib0004 article-title: Residential energy monitoring and computerized surveillance via utility power flows publication-title: IEEE Technol. Soc. Mag. doi: 10.1109/44.31557 – volume: 10 start-page: 2969 issue: 3 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0017 article-title: Simultaneous detection of multiple appliances from smart-meter measurements via multi-label consistent deep dictionary learning and deep transform learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2815763 – start-page: 1 issue: 99 year: 2015 ident: 10.1016/j.epsr.2021.107414_bib0013 article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring publication-title: IEEE Trans. Smart Grid – start-page: 55 year: 2015 ident: 10.1016/j.epsr.2021.107414_bib0015 article-title: Neural NILM: deep neural networks applied to energy disaggregation publication-title: ACM BuildSys doi: 10.1145/2821650.2821672 – volume: 486 start-page: 26 issue: 2006 year: 2006 ident: 10.1016/j.epsr.2021.107414_bib0002 article-title: The effectiveness of feedback on energy consumption publication-title: A Review for DEFRA of the Literature on Metering, Billing and direct Displays – volume: 64 start-page: 792 issue: 7 year: 2017 ident: 10.1016/j.epsr.2021.107414_bib0007 article-title: Load disaggregation based on aided linear integer programming publication-title: IEEE Trans. Circuits Syst. II: Express Briefs – year: 2017 ident: 10.1016/j.epsr.2021.107414_bib0001 – start-page: 629 year: 2015 ident: 10.1016/j.epsr.2021.107414_bib0014 article-title: Energy disaggregation via learning powerlets and sparse coding publication-title: AAAI – volume: 9 start-page: 4669 issue: 5 year: 2018 ident: 10.1016/j.epsr.2021.107414_bib0010 article-title: Deep sparse coding for non–intrusive load monitoring publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2666220 – volume: 12 start-page: 47 issue: 4 year: 1999 ident: 10.1016/j.epsr.2021.107414_bib0003 article-title: Nonintrusive monitoring of electric loads publication-title: IEEE Comput. Appl. Power doi: 10.1109/67.795138 – volume: 8 start-page: 26 issue: 1 year: 2017 ident: 10.1016/j.epsr.2021.107414_bib0011 article-title: Toward Non-Intrusive Load Monitoring via Multi-Label Classification publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2584581 – volume: 18315 start-page: 547 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0009 article-title: Energy disaggregation based on smart metering data via semi-binary nonnegative matrix factorization publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.10.030 – start-page: 843 year: 2015 ident: 10.1016/j.epsr.2021.107414_bib0022 article-title: Unsupervised learning of video representations using LSTMs publication-title: ICML – volume: 80 start-page: 1870 issue: 12 year: 1992 ident: 10.1016/j.epsr.2021.107414_bib0005 article-title: Nonintrusive appliance load monitoring publication-title: Proc. IEEE doi: 10.1109/5.192069 – start-page: 1153 year: 2011 ident: 10.1016/j.epsr.2021.107414_bib0008 article-title: Energy disaggregation via discriminative sparse coding publication-title: NIPS – volume: 178 issue: 106037 year: 2020 ident: 10.1016/j.epsr.2021.107414_bib0021 article-title: A new approach of electrical appliance identification in residential buildings publication-title: Electric Power Syst. Res. – volume: 170 start-page: 277 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0025 article-title: Non-intrusive load disaggregation based on deep dilated residual network publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2019.01.034 – start-page: 1143 year: 2017 ident: 10.1016/j.epsr.2021.107414_bib0023 article-title: Google's Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-to-Sequence LSTM-Based Autoencoders publication-title: IEEE INTERSPEECH – volume: 187 issue: 106459 year: 2020 ident: 10.1016/j.epsr.2021.107414_bib0020 article-title: Dimension reduction for NILM classification based on principle component analysis publication-title: Electric Power Syst. Res. – volume: 7 start-page: 235 issue: 10 year: 2018 ident: 10.1016/j.epsr.2021.107414_bib0018 article-title: An extreme learning machine approach to effective energy disaggregation publication-title: Electronics doi: 10.3390/electronics7100235 – volume: 177 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0016 article-title: Multi-objective evolutionary algorithms applied to non-intrusive load monitoring publication-title: Electric Power Syst. Res. doi: 10.1016/j.epsr.2019.105961 – volume: 11 start-page: 262 issue: 1 year: 2015 ident: 10.1016/j.epsr.2021.107414_bib0012 article-title: Nonintrusive load monitoring: a temporal multilabel classification approach publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2014.2361288 – start-page: 1150 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0026 article-title: Subtask gated networks for non-intrusive load monitoring publication-title: AAAI doi: 10.1609/aaai.v33i01.33011150 – start-page: 1472 year: 2012 ident: 10.1016/j.epsr.2021.107414_bib0006 article-title: Approximate inference in additive factorial hmms with application to energy disaggregation publication-title: AISTATS – start-page: 8345 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0019 article-title: Multi label restricted Boltzmann machine for non-intrusive load monitoring publication-title: IEEE ICASSP – volume: 10 start-page: 4615 issue: 4 year: 2019 ident: 10.1016/j.epsr.2021.107414_bib0024 article-title: Residential household non-intrusive load monitoring via graph-based multi-label semi-supervised learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2865702 |
| SSID | ssj0006975 |
| Score | 2.5058484 |
| Snippet | •Proposed a new approach to NILM.•LSTM autoencoder fuses dynamic and static modeling paradigms.•Improves over the state-of-the-art algorithms.
This work... This work follows the multi-label classification based paradigm for non-intrusive load monitoring (NILM). Power consumption signals used for NILM are... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107414 |
| SubjectTerms | Algorithms Artificial Intelligence Autoencoder Computer Science Datasets Deep learning Electric power Energy consumption Energy disaggregation Engineering Sciences LSTM Monitoring systems Non-intrusive load monitoring Power consumption Signal classification Signal monitoring |
| Title | Multi-label LSTM autoencoder for non-intrusive appliance load monitoring |
| URI | https://dx.doi.org/10.1016/j.epsr.2021.107414 https://www.proquest.com/docview/2581069385 https://hal.science/hal-03294549 |
| Volume | 199 |
| WOSCitedRecordID | wos000685285700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdruoftYeyTdeuGGXszHvG39BhGRzbSMkg28iYkWW6Spm6o09I_f3eSrKQZLevDXowxtix0P-lOp9_dEfJZJZVIKi2iskpVlOlKR1LWRZTUaZ5lAGhpKs_9HpUnJ3Q6ZT9deoLWlBMom4be3LDVfxU1PANhY-jsA8TtG4UHcA9ChyuIHa7_JHgTUhuBcPUyHI0nx6G4Wl9gukrMGoGkQtjwR_MGgy2QNWROsE3cwPJCVOG5meOXnULrfPamWM5chSssqubSP-OBw5YvDKt24TJv_cynwrN-x9CYcd6MZ_OzmVcDx2JxdV5ZfvegOW1njqLoXBBJ7MlsPvQKtqJlaUvT-mXVFj5yCyPyPm206F9rtnUfLED9tpigNYm_bF6-nSB7R3F5OmHHVFtwbINjG9y2sUf2kzJntEf2B9-Ppj-8ki6YycHse-7iqSz1b7cnd9ksezMkz-7ocGOYTJ6TZ25HEQwsEl6QR7p5SZ5u5Zl8RYZbmAgQE8EWJgLARHALE4HHRICYCDaYeE1-fTuafB1GroRGpMAyWUeCCSplmeuaiqyoC1jSK1FQPFKraw03qZCZEiLVCSuYVAIsUkGpTGlW01qy9A3pQQ_0WxL0JZ7Sl7qosjpTVEjaL7SmMDwqAVUVH5C4GySuXH55LHOy5HeL54CE_puVza5y79t5N_bc2YfW7uMApXu_-wSC8j_AhOrDwYjjs36asCzP2DV0_7CTI3ezueVJTmOASkrzdw_q6XvyZDNPDkkPxKc_kMfqej1vLz86LP4B8v6dPQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+LSTM+autoencoder+for+non-intrusive+appliance+load+monitoring&rft.jtitle=Electric+power+systems+research&rft.au=Verma%2C+Sagar&rft.au=Singh%2C+Shikha&rft.au=Majumdar%2C+Angshul&rft.date=2021-10-01&rft.issn=0378-7796&rft.volume=199&rft.spage=107414&rft_id=info:doi/10.1016%2Fj.epsr.2021.107414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2021_107414 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |