The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems

Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 390; S. 125863
Hauptverfasser: Yan, Peiliang, Wen, Chuang, Ding, Hongbing, Wang, Xuehui, Yang, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.07.2025
Schlagworte:
ISSN:0306-2619
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of a novel triplex-tube thermal energy storage system incorporating phase change materials and Y-shaped fins to enhance heat transfer. A numerical model based on the enthalpy-porosity method was developed to simulate the melting process, resulting in a dataset comprising 60 cases with melting response times ranging from 15 to 45 min under varying design and operational conditions. The key parameters investigated include fin angle (10°–30°), fin width (5–15 mm), and heat transfer fluid temperature (60 °C–80 °C). Prior to model development, variable independence was validated to ensure robust predictions. Four machine learning algorithms—polynomial regression, support vector regression, random forest regression, and extreme gradient boosting (XGBoost)—were employed, with hyperparameter optimization performed using a Bayesian approach. The XGBoost model demonstrated superior predictive capability, achieving an accuracy of 92 %. Feature importance analysis revealed that fin width and heat transfer fluid temperature were the dominant factors, contributing 51 % and 47 % to the prediction variance, respectively, whereas fin angle had a marginal influence of 2 %. This work provides a novel application of machine learning techniques to the design and optimization of thermal energy storage systems, offering valuable insights into improving their melting performance and operational efficiency. •Y-shaped fins to enhance phase change material charging performance in latent thermal energy storage systems.•Predicting melting response time using four machine learning methods.•Evaluation of model performance using mean square error and coefficient of determination.•Conducted Feature importance evaluation to guide fin improvements.
AbstractList Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of a novel triplex-tube thermal energy storage system incorporating phase change materials and Y-shaped fins to enhance heat transfer. A numerical model based on the enthalpy-porosity method was developed to simulate the melting process, resulting in a dataset comprising 60 cases with melting response times ranging from 15 to 45 min under varying design and operational conditions. The key parameters investigated include fin angle (10°–30°), fin width (5–15 mm), and heat transfer fluid temperature (60 °C–80 °C). Prior to model development, variable independence was validated to ensure robust predictions. Four machine learning algorithms—polynomial regression, support vector regression, random forest regression, and extreme gradient boosting (XGBoost)—were employed, with hyperparameter optimization performed using a Bayesian approach. The XGBoost model demonstrated superior predictive capability, achieving an accuracy of 92 %. Feature importance analysis revealed that fin width and heat transfer fluid temperature were the dominant factors, contributing 51 % and 47 % to the prediction variance, respectively, whereas fin angle had a marginal influence of 2 %. This work provides a novel application of machine learning techniques to the design and optimization of thermal energy storage systems, offering valuable insights into improving their melting performance and operational efficiency. •Y-shaped fins to enhance phase change material charging performance in latent thermal energy storage systems.•Predicting melting response time using four machine learning methods.•Evaluation of model performance using mean square error and coefficient of determination.•Conducted Feature importance evaluation to guide fin improvements.
ArticleNumber 125863
Author Yang, Yan
Yan, Peiliang
Wen, Chuang
Ding, Hongbing
Wang, Xuehui
Author_xml – sequence: 1
  givenname: Peiliang
  surname: Yan
  fullname: Yan, Peiliang
  organization: School of Energy and Power Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Chuang
  surname: Wen
  fullname: Wen, Chuang
  email: c.wen@reading.ac.uk
  organization: School of the Built Environment, University of Reading, Reading RG6 6AH, United Kingdom
– sequence: 3
  givenname: Hongbing
  surname: Ding
  fullname: Ding, Hongbing
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Xuehui
  surname: Wang
  fullname: Wang, Xuehui
  organization: School of Mechanical & Materials Engineering, University College Dublin, Dublin D04 V1W8, Ireland
– sequence: 5
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  email: y.yang7@exeter.ac.uk
  organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
BookMark eNqFkN1OwyAYQLmYidv0FQwv0Ams7brEC83iX7LEm3lNKPtYWVpo4NO41_CJpaneeLMLQiA554MzIxPnHRByw9mCM17eHheqBwfhcFoIJooFF0VVLidkypaszETJ15dkFuORMSa4YFPyvWuA9h7BoVUt9YZ2SjfWAW1BBWfdgaKnfYC91Ug7aHG4ChB77yJQtB0MUN-odNKNcgdIBoSQbJFaRzHYvoWvDD_q5FTDIIoNhC5NG19KI_qgEhdPEaGLV-TCJBiuf_c5eX963G1esu3b8-vmYZvpZSkwK_MamMiFMWtRVXydF2sQLN-bvDA1AK-M4GDEaqWZNjVfFZUodb1Xq1yItPRyTu5Grw4-xgBGaosKrXcYlG0lZ3JoKo_yr6kcmsqxacLLf3gfbKfC6Tx4P4KQPvdpIcioLTidEgfQKPfenlP8ALjbneM
CitedBy_id crossref_primary_10_1016_j_energy_2025_138452
crossref_primary_10_1016_j_est_2025_117464
crossref_primary_10_1016_j_applthermaleng_2025_128365
crossref_primary_10_1016_j_egyai_2025_100602
crossref_primary_10_1016_j_est_2025_118204
Cites_doi 10.1016/j.apenergy.2020.114566
10.1016/j.scs.2023.104521
10.1016/j.tranpol.2023.09.010
10.1016/j.energy.2023.127227
10.1016/j.rser.2012.05.030
10.1016/j.enbuild.2013.09.007
10.1016/j.applthermaleng.2021.117997
10.1016/j.scs.2023.104960
10.1016/j.est.2023.107912
10.1016/j.rineng.2023.101412
10.1016/0017-9310(82)90242-3
10.1016/j.ijheatmasstransfer.2006.10.007
10.1016/j.ijheatmasstransfer.2013.02.030
10.1016/j.est.2023.109188
10.1016/j.est.2021.102458
10.1016/j.est.2021.102672
10.1016/j.est.2022.104620
10.1016/j.est.2023.108161
10.1016/j.tsep.2021.100963
10.1016/j.scs.2018.01.020
10.1016/j.ijheatmasstransfer.2006.12.017
10.1016/j.icheatmasstransfer.2023.106952
10.1016/j.apenergy.2022.120576
10.1016/j.apenergy.2023.122006
10.1016/j.scs.2022.104294
10.1016/j.renene.2022.02.035
10.1023/A:1010933404324
10.1016/j.ijthermalsci.2016.10.017
10.1007/BF00994018
10.1177/875647939000600106
10.1016/j.est.2022.104157
10.1080/10407788808913615
10.1016/S0017-9310(99)00024-1
10.1016/j.jtice.2023.104680
10.3390/electronics10222785
10.1016/j.enbuild.2023.113479
10.1016/j.renene.2020.12.057
10.1109/34.709601
10.1016/j.applthermaleng.2023.120114
10.1016/j.apenergy.2016.11.036
10.1007/BF00058655
10.1016/j.est.2023.108775
10.1016/j.icheatmasstransfer.2024.107294
10.1016/j.apenergy.2023.121352
10.1145/2939672.2939785
10.1016/j.apenergy.2022.120064
10.1016/B978-0-444-63428-3.50078-3
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.apenergy.2025.125863
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2025_125863
S0306261925005938
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAQXK
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c362t-64be0242ff928819459e204df45fbee18f21ef277c0cfb175826cbda7422742c3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001476682300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Tue Nov 18 21:44:02 EST 2025
Sat Nov 29 08:01:17 EST 2025
Sat May 24 17:07:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal energy storage
XGBoost algorithm
Phase change material
Melting response time
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-64be0242ff928819459e204df45fbee18f21ef277c0cfb175826cbda7422742c3
OpenAccessLink https://dx.doi.org/10.1016/j.apenergy.2025.125863
ParticipantIDs crossref_citationtrail_10_1016_j_apenergy_2025_125863
crossref_primary_10_1016_j_apenergy_2025_125863
elsevier_sciencedirect_doi_10_1016_j_apenergy_2025_125863
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yan, Fan, Han, Ding, Wen, Elbarghthi (bb0035) 2023; 346
Du, Calautit, Eames, Wu (bb0065) 2021; 168
Li, Zou, Sun, Zhang (bb0075) 2018; 40
Choure, Alam, Kumar (bb0050) 2023; 72
Palmer, Arshad, Yang, Wen (bb0100) 2023; 333
Mahdi, Nsofor (bb0030) 2017; 191
Goel, Dwivedi, Kumar, Kumar, Pandey, Chopra (bb0070) 2023; 69
Zavrl, Tomc, El Mankibi, Dovjak, Stritih (bb0085) 2023; 99
Yan, Fan, Yang, Ding, Arshad, Wen (bb0190) 2022; 327
Taylor (bb0235) 1990; 6
Tin (bb0255) 1998; 20
Jain, Kumar, Rakshit (bb0040) 2021; 48
Chuttar, Banerjee (bb0185) 2021; 10
Chen, Xi, Zhang, Wang, Cui, Long (bb0020) 2023; 224
Ye, Arıcı (bb0210) 2024; 152
Huang, Yao, Yang, Zhou, Luo, Shen (bb0115) 2022; 204
IPCC. Climate change 2023 synthesis report. 2023.
Fini, Fattahi, Musavi (bb0180) 2023; 148
Chabot, Gosselin (bb0155) 2017; 112
Abilkhassenova, Memon, Ahmad, Saurbayeva, Kim (bb0045) 2023; 297
Ye, Arıcı (bb0195) 2023; 144
Yan, Fan, Zhang (bb0165) 2023; 273
Liu, Liu, Nie (bb0125) 2021; 40
Ermis, Erek, Dincer (bb0175) 2007; 50
Assis, Katsman, Ziskind, Letan (bb0150) 2007; 50
Breiman (bb0245) 2001; 45
Cortes, Vapnik (bb0240) 1995; 20
Abu-Hamdeh, Khoshaim, Alzahrani, Hatamleh (bb0025) 2022; 57
Wang, Amiri, Vafai (bb0145) 1999; 42
Rieger, Projahn, Beer (bb0140) 1982; 25
Brent, Voller, Reid (bb0200) 1988; 13
Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: Association for Computing Machinery; 2016. p. 785–94, numpages = 10.
Xu, Lu, Zheng (bb0095) 2023; 93
Breiman (bb0250) 1996; 24
Agarwal, Prabhakar (bb0080) 2023; 88
Wallimann, Sticher (bb0170) 2023; 143
Khan, Alkhedher, Ramadan, Ghazal (bb0060) 2023; 73
Safari, Abolghasemi, Darvishvand, Kamkari (bb0230) 2021; 37
Zonouzi, Dadvar (bb0135) 2022; 49
Cai, Xu, Zhu, Hu, Li (bb0160) 2020; 262
Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, Nevada: Curran Associates Inc.; 2012. p. 2951–9.
Hassan, El-Rayes (bb0015) 2024; 353
Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (bb0220) 2014; 68
Pouresmaieli, Ataei, Nouri Qarahasanlou, Barabadi (bb0010) 2023; 20
Hameter, Walter (bb0205) 2016; 38
Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (bb0130) 2013; 61
Saraf, Panda, Gangawane (bb0110) 2023; 73
Huang, Yao, Yang, Zhou (bb0120) 2022; 188
Al-Abidi, Bin Mat, Sopian, Sulaiman, Lim, Th (bb0090) 2012; 16
Ye, Arıcı (bb0225) 2023; 147
Ye, Arıcı (bb0215) 2023; 144
Sarkar, Mestry, Mhaske (bb0055) 2022; 50
Nitsas, Koronaki (bb0105) 2021; 25
Uddin, Lu (bb0270) 2024
Hassan (10.1016/j.apenergy.2025.125863_bb0015) 2024; 353
Al-Abidi (10.1016/j.apenergy.2025.125863_bb0130) 2013; 61
Hameter (10.1016/j.apenergy.2025.125863_bb0205) 2016; 38
Fini (10.1016/j.apenergy.2025.125863_bb0180) 2023; 148
Choure (10.1016/j.apenergy.2025.125863_bb0050) 2023; 72
Ermis (10.1016/j.apenergy.2025.125863_bb0175) 2007; 50
Ye (10.1016/j.apenergy.2025.125863_bb0215) 2023; 144
Yan (10.1016/j.apenergy.2025.125863_bb0035) 2023; 346
Breiman (10.1016/j.apenergy.2025.125863_bb0245) 2001; 45
Saraf (10.1016/j.apenergy.2025.125863_bb0110) 2023; 73
Huang (10.1016/j.apenergy.2025.125863_bb0115) 2022; 204
10.1016/j.apenergy.2025.125863_bb0005
Agarwal (10.1016/j.apenergy.2025.125863_bb0080) 2023; 88
Taylor (10.1016/j.apenergy.2025.125863_bb0235) 1990; 6
Rieger (10.1016/j.apenergy.2025.125863_bb0140) 1982; 25
Yan (10.1016/j.apenergy.2025.125863_bb0165) 2023; 273
Zavrl (10.1016/j.apenergy.2025.125863_bb0085) 2023; 99
Tin (10.1016/j.apenergy.2025.125863_bb0255) 1998; 20
Zonouzi (10.1016/j.apenergy.2025.125863_bb0135) 2022; 49
Cai (10.1016/j.apenergy.2025.125863_bb0160) 2020; 262
Sarkar (10.1016/j.apenergy.2025.125863_bb0055) 2022; 50
Liu (10.1016/j.apenergy.2025.125863_bb0125) 2021; 40
Chabot (10.1016/j.apenergy.2025.125863_bb0155) 2017; 112
Palmer (10.1016/j.apenergy.2025.125863_bb0100) 2023; 333
Chuttar (10.1016/j.apenergy.2025.125863_bb0185) 2021; 10
Mahdi (10.1016/j.apenergy.2025.125863_bb0030) 2017; 191
Jain (10.1016/j.apenergy.2025.125863_bb0040) 2021; 48
Ye (10.1016/j.apenergy.2025.125863_bb0195) 2023; 144
Cortes (10.1016/j.apenergy.2025.125863_bb0240) 1995; 20
Assis (10.1016/j.apenergy.2025.125863_bb0150) 2007; 50
Brent (10.1016/j.apenergy.2025.125863_bb0200) 1988; 13
Huang (10.1016/j.apenergy.2025.125863_bb0120) 2022; 188
Nitsas (10.1016/j.apenergy.2025.125863_bb0105) 2021; 25
Yan (10.1016/j.apenergy.2025.125863_bb0190) 2022; 327
Du (10.1016/j.apenergy.2025.125863_bb0065) 2021; 168
Safari (10.1016/j.apenergy.2025.125863_bb0230) 2021; 37
Xu (10.1016/j.apenergy.2025.125863_bb0095) 2023; 93
Al-Abidi (10.1016/j.apenergy.2025.125863_bb0220) 2014; 68
Goel (10.1016/j.apenergy.2025.125863_bb0070) 2023; 69
Wang (10.1016/j.apenergy.2025.125863_bb0145) 1999; 42
10.1016/j.apenergy.2025.125863_bb0265
Li (10.1016/j.apenergy.2025.125863_bb0075) 2018; 40
Pouresmaieli (10.1016/j.apenergy.2025.125863_bb0010) 2023; 20
Chen (10.1016/j.apenergy.2025.125863_bb0020) 2023; 224
Ye (10.1016/j.apenergy.2025.125863_bb0225) 2023; 147
Khan (10.1016/j.apenergy.2025.125863_bb0060) 2023; 73
Breiman (10.1016/j.apenergy.2025.125863_bb0250) 1996; 24
10.1016/j.apenergy.2025.125863_bb0260
Al-Abidi (10.1016/j.apenergy.2025.125863_bb0090) 2012; 16
Abu-Hamdeh (10.1016/j.apenergy.2025.125863_bb0025) 2022; 57
Uddin (10.1016/j.apenergy.2025.125863_bb0270) 2024
Wallimann (10.1016/j.apenergy.2025.125863_bb0170) 2023; 143
Ye (10.1016/j.apenergy.2025.125863_bb0210) 2024; 152
Abilkhassenova (10.1016/j.apenergy.2025.125863_bb0045) 2023; 297
References_xml – volume: 57
  year: 2022
  ident: bb0025
  article-title: Study of the flat plate solar collector’s efficiency for sustainable and renewable energy management in a building by a phase change material: containing paraffin-wax/graphene and paraffin-wax/graphene oxide carbon-based fluids
  publication-title: J Build Eng
– volume: 99
  year: 2023
  ident: bb0085
  article-title: Parametric study of an active-passive system for cooling application in buildings improved with free cooling for enhanced solidification
  publication-title: Sustain Cities Soc
– volume: 25
  start-page: 137
  year: 1982
  end-page: 147
  ident: bb0140
  article-title: Analysis of the heat transport mechanisms during melting around a horizontal circular cylinder
  publication-title: Int J Heat Mass Transf
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0245
  article-title: Random forests
  publication-title: Mach Learn
– volume: 112
  start-page: 345
  year: 2017
  end-page: 357
  ident: bb0155
  article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations
  publication-title: Int J Therm Sci
– volume: 50
  start-page: 1790
  year: 2007
  end-page: 1804
  ident: bb0150
  article-title: Numerical and experimental study of melting in a spherical shell
  publication-title: Int J Heat Mass Transf
– volume: 144
  year: 2023
  ident: bb0195
  article-title: False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transfer
– volume: 42
  start-page: 3659
  year: 1999
  end-page: 3672
  ident: bb0145
  article-title: An experimental investigation of the melting process in a rectangular enclosure
  publication-title: Int J Heat Mass Transf
– volume: 168
  start-page: 1040
  year: 2021
  end-page: 1057
  ident: bb0065
  article-title: A state-of-the-art review of the application of phase change materials (PCM) in mobilized-thermal energy storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply
  publication-title: Renew Energy
– volume: 297
  year: 2023
  ident: bb0045
  article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide
  publication-title: Energ Build
– volume: 16
  start-page: 5802
  year: 2012
  end-page: 5819
  ident: bb0090
  article-title: Review of thermal energy storage for air conditioning systems
  publication-title: Renew Sust Energ Rev
– volume: 73
  year: 2023
  ident: bb0060
  article-title: Hybrid PCM-based thermal management for lithium-ion batteries: trends and challenges
  publication-title: J Energy Storage
– volume: 50
  start-page: 3163
  year: 2007
  end-page: 3175
  ident: bb0175
  article-title: Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network
  publication-title: Int J Heat Mass Transf
– reference: Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, Nevada: Curran Associates Inc.; 2012. p. 2951–9.
– volume: 61
  start-page: 684
  year: 2013
  end-page: 695
  ident: bb0130
  article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins
  publication-title: Int J Heat Mass Transf
– reference: Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: Association for Computing Machinery; 2016. p. 785–94, numpages = 10.
– volume: 224
  year: 2023
  ident: bb0020
  article-title: Experimental study on nucleation and micro-explosion characteristics of emulsified heavy fuel oil droplets at elevated temperatures during evaporation
  publication-title: Appl Therm Eng
– volume: 37
  year: 2021
  ident: bb0230
  article-title: Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material
  publication-title: J Energy Storage
– volume: 327
  year: 2022
  ident: bb0190
  article-title: Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations
  publication-title: Appl Energy
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bb0250
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 93
  year: 2023
  ident: bb0095
  article-title: Thermodynamic optimization of cascaded PCMs charge process based on entransy dissipation extreme principle
  publication-title: Sustain Cities Soc
– volume: 148
  year: 2023
  ident: bb0180
  article-title: Machine learning prediction and multiobjective optimization for cooling enhancement of a plate battery using the chaotic water-microencapsulated PCM fluid flows
  publication-title: J Taiwan Inst Chem Eng
– volume: 346
  year: 2023
  ident: bb0035
  article-title: Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems
  publication-title: Appl Energy
– volume: 40
  start-page: 266
  year: 2018
  end-page: 273
  ident: bb0075
  article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM
  publication-title: Sustain Cities Soc
– reference: IPCC. Climate change 2023 synthesis report. 2023.
– volume: 48
  year: 2021
  ident: bb0040
  article-title: Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: research progress, challenges, and recommendations
  publication-title: Sustain Energy Technol Assess
– volume: 273
  year: 2023
  ident: bb0165
  article-title: Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization
  publication-title: Energy
– start-page: 14
  year: 2024
  ident: bb0270
  article-title: Dataset meta-level and statistical features affect machine learning performance
  publication-title: Sci Rep
– volume: 40
  year: 2021
  ident: bb0125
  article-title: Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube
  publication-title: J Energy Storage
– volume: 6
  start-page: 35
  year: 1990
  end-page: 39
  ident: bb0235
  article-title: Interpretation of the correlation coefficient: a basic review
  publication-title: J Diagnostic Med Sonography
– volume: 88
  year: 2023
  ident: bb0080
  article-title: Energy and thermo-economic analysis of PCM integrated brick in composite climatic condition of Jaipur - a numerical study
  publication-title: Sustain Cities Soc
– volume: 188
  start-page: 890
  year: 2022
  end-page: 910
  ident: bb0120
  article-title: Melting performance assessments on a triplex-tube thermal energy storage system: optimization based on response surface method with natural convection
  publication-title: Renew Energy
– volume: 68
  start-page: 33
  year: 2014
  end-page: 41
  ident: bb0220
  article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins
  publication-title: Energ Build
– volume: 262
  year: 2020
  ident: bb0160
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl Energy
– volume: 50
  year: 2022
  ident: bb0055
  article-title: Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: a review
  publication-title: J Energy Storage
– volume: 152
  year: 2024
  ident: bb0210
  article-title: Exploring mushy zone constant in enthalpy-porosity methodology for accurate modeling convection-diffusion solid-liquid phase change of calcium chloride hexahydrate
  publication-title: Int Commun Heat Mass Transfer
– volume: 20
  year: 2023
  ident: bb0010
  article-title: Integration of renewable energy and sustainable development with strategic planning in the mining industry
  publication-title: Results Eng
– volume: 69
  year: 2023
  ident: bb0070
  article-title: PCM-assisted energy storage systems for solar-thermal applications: review of the associated problems and their mitigation strategies
  publication-title: J Energy Storage
– volume: 10
  start-page: 2785
  year: 2021
  ident: bb0185
  article-title: Machine learning (ML) based thermal Management for Cooling of electronics chips by utilizing thermal energy storage (TES) in packaging that leverages phase change materials (PCM)
  publication-title: Electronics
– volume: 25
  year: 2021
  ident: bb0105
  article-title: Performance analysis of nanoparticles-enhanced PCM: an experimental approach
  publication-title: Thermal Sci Eng Progress
– volume: 73
  year: 2023
  ident: bb0110
  article-title: Performance analysis of hybrid expanded graphite-NiFe2O4 nanoparticles-enhanced eutectic PCM for thermal energy storage
  publication-title: J Energy Storage
– volume: 38
  start-page: 439
  year: 2016
  end-page: 444
  ident: bb0205
  article-title: Influence of the mushy zone constant on the numerical simulation of the melting and solidification process of phase change materials
  publication-title: Comput Aided Chem Eng
– volume: 333
  year: 2023
  ident: bb0100
  article-title: Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations
  publication-title: Appl Energy
– volume: 204
  year: 2022
  ident: bb0115
  article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system
  publication-title: Appl Therm Eng
– volume: 143
  start-page: 121
  year: 2023
  end-page: 131
  ident: bb0170
  article-title: On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement
  publication-title: Transp Policy
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bb0255
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 72
  year: 2023
  ident: bb0050
  article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system
  publication-title: J Energy Storage
– volume: 147
  year: 2023
  ident: bb0225
  article-title: Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transfer
– volume: 144
  year: 2023
  ident: bb0215
  article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transfer
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0240
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 13
  start-page: 297
  year: 1988
  end-page: 318
  ident: bb0200
  article-title: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal
  publication-title: Numerical Heat Transfer
– volume: 353
  year: 2024
  ident: bb0015
  article-title: Optimal use of renewable energy technologies during building schematic design phase
  publication-title: Appl Energy
– volume: 191
  start-page: 22
  year: 2017
  end-page: 34
  ident: bb0030
  article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination
  publication-title: Appl Energy
– volume: 49
  year: 2022
  ident: bb0135
  article-title: Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system
  publication-title: J Energy Storage
– volume: 262
  year: 2020
  ident: 10.1016/j.apenergy.2025.125863_bb0160
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114566
– ident: 10.1016/j.apenergy.2025.125863_bb0005
– volume: 48
  year: 2021
  ident: 10.1016/j.apenergy.2025.125863_bb0040
  article-title: Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: research progress, challenges, and recommendations
  publication-title: Sustain Energy Technol Assess
– volume: 93
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0095
  article-title: Thermodynamic optimization of cascaded PCMs charge process based on entransy dissipation extreme principle
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2023.104521
– volume: 143
  start-page: 121
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0170
  article-title: On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement
  publication-title: Transp Policy
  doi: 10.1016/j.tranpol.2023.09.010
– volume: 273
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0165
  article-title: Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127227
– volume: 16
  start-page: 5802
  year: 2012
  ident: 10.1016/j.apenergy.2025.125863_bb0090
  article-title: Review of thermal energy storage for air conditioning systems
  publication-title: Renew Sust Energ Rev
  doi: 10.1016/j.rser.2012.05.030
– volume: 68
  start-page: 33
  year: 2014
  ident: 10.1016/j.apenergy.2025.125863_bb0220
  article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins
  publication-title: Energ Build
  doi: 10.1016/j.enbuild.2013.09.007
– volume: 204
  year: 2022
  ident: 10.1016/j.apenergy.2025.125863_bb0115
  article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2021.117997
– volume: 99
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0085
  article-title: Parametric study of an active-passive system for cooling application in buildings improved with free cooling for enhanced solidification
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2023.104960
– volume: 69
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0070
  article-title: PCM-assisted energy storage systems for solar-thermal applications: review of the associated problems and their mitigation strategies
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107912
– volume: 20
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0010
  article-title: Integration of renewable energy and sustainable development with strategic planning in the mining industry
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2023.101412
– volume: 25
  start-page: 137
  year: 1982
  ident: 10.1016/j.apenergy.2025.125863_bb0140
  article-title: Analysis of the heat transport mechanisms during melting around a horizontal circular cylinder
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(82)90242-3
– volume: 50
  start-page: 1790
  year: 2007
  ident: 10.1016/j.apenergy.2025.125863_bb0150
  article-title: Numerical and experimental study of melting in a spherical shell
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.10.007
– volume: 61
  start-page: 684
  year: 2013
  ident: 10.1016/j.apenergy.2025.125863_bb0130
  article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.02.030
– volume: 73
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0110
  article-title: Performance analysis of hybrid expanded graphite-NiFe2O4 nanoparticles-enhanced eutectic PCM for thermal energy storage
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.109188
– volume: 37
  year: 2021
  ident: 10.1016/j.apenergy.2025.125863_bb0230
  article-title: Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102458
– volume: 40
  year: 2021
  ident: 10.1016/j.apenergy.2025.125863_bb0125
  article-title: Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102672
– volume: 50
  year: 2022
  ident: 10.1016/j.apenergy.2025.125863_bb0055
  article-title: Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: a review
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104620
– volume: 72
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0050
  article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108161
– volume: 25
  year: 2021
  ident: 10.1016/j.apenergy.2025.125863_bb0105
  article-title: Performance analysis of nanoparticles-enhanced PCM: an experimental approach
  publication-title: Thermal Sci Eng Progress
  doi: 10.1016/j.tsep.2021.100963
– volume: 40
  start-page: 266
  year: 2018
  ident: 10.1016/j.apenergy.2025.125863_bb0075
  article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.01.020
– volume: 50
  start-page: 3163
  year: 2007
  ident: 10.1016/j.apenergy.2025.125863_bb0175
  article-title: Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.12.017
– volume: 147
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0225
  article-title: Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106952
– volume: 333
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0100
  article-title: Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120576
– volume: 353
  year: 2024
  ident: 10.1016/j.apenergy.2025.125863_bb0015
  article-title: Optimal use of renewable energy technologies during building schematic design phase
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.122006
– volume: 88
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0080
  article-title: Energy and thermo-economic analysis of PCM integrated brick in composite climatic condition of Jaipur - a numerical study
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104294
– start-page: 14
  year: 2024
  ident: 10.1016/j.apenergy.2025.125863_bb0270
  article-title: Dataset meta-level and statistical features affect machine learning performance
  publication-title: Sci Rep
– volume: 188
  start-page: 890
  year: 2022
  ident: 10.1016/j.apenergy.2025.125863_bb0120
  article-title: Melting performance assessments on a triplex-tube thermal energy storage system: optimization based on response surface method with natural convection
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.02.035
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.apenergy.2025.125863_bb0245
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 112
  start-page: 345
  year: 2017
  ident: 10.1016/j.apenergy.2025.125863_bb0155
  article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2016.10.017
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.apenergy.2025.125863_bb0240
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 6
  start-page: 35
  year: 1990
  ident: 10.1016/j.apenergy.2025.125863_bb0235
  article-title: Interpretation of the correlation coefficient: a basic review
  publication-title: J Diagnostic Med Sonography
  doi: 10.1177/875647939000600106
– volume: 144
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0195
  article-title: False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transfer
– volume: 49
  year: 2022
  ident: 10.1016/j.apenergy.2025.125863_bb0135
  article-title: Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104157
– volume: 13
  start-page: 297
  year: 1988
  ident: 10.1016/j.apenergy.2025.125863_bb0200
  article-title: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal
  publication-title: Numerical Heat Transfer
  doi: 10.1080/10407788808913615
– volume: 42
  start-page: 3659
  year: 1999
  ident: 10.1016/j.apenergy.2025.125863_bb0145
  article-title: An experimental investigation of the melting process in a rectangular enclosure
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(99)00024-1
– volume: 148
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0180
  article-title: Machine learning prediction and multiobjective optimization for cooling enhancement of a plate battery using the chaotic water-microencapsulated PCM fluid flows
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2023.104680
– volume: 10
  start-page: 2785
  year: 2021
  ident: 10.1016/j.apenergy.2025.125863_bb0185
  article-title: Machine learning (ML) based thermal Management for Cooling of electronics chips by utilizing thermal energy storage (TES) in packaging that leverages phase change materials (PCM)
  publication-title: Electronics
  doi: 10.3390/electronics10222785
– volume: 297
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0045
  article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide
  publication-title: Energ Build
  doi: 10.1016/j.enbuild.2023.113479
– volume: 168
  start-page: 1040
  year: 2021
  ident: 10.1016/j.apenergy.2025.125863_bb0065
  article-title: A state-of-the-art review of the application of phase change materials (PCM) in mobilized-thermal energy storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.12.057
– volume: 20
  start-page: 832
  year: 1998
  ident: 10.1016/j.apenergy.2025.125863_bb0255
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– volume: 224
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0020
  article-title: Experimental study on nucleation and micro-explosion characteristics of emulsified heavy fuel oil droplets at elevated temperatures during evaporation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2023.120114
– volume: 144
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0215
  article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology
  publication-title: Int Commun Heat Mass Transfer
– volume: 57
  year: 2022
  ident: 10.1016/j.apenergy.2025.125863_bb0025
  article-title: Study of the flat plate solar collector’s efficiency for sustainable and renewable energy management in a building by a phase change material: containing paraffin-wax/graphene and paraffin-wax/graphene oxide carbon-based fluids
  publication-title: J Build Eng
– volume: 191
  start-page: 22
  year: 2017
  ident: 10.1016/j.apenergy.2025.125863_bb0030
  article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.036
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.apenergy.2025.125863_bb0250
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– ident: 10.1016/j.apenergy.2025.125863_bb0265
– volume: 73
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0060
  article-title: Hybrid PCM-based thermal management for lithium-ion batteries: trends and challenges
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108775
– volume: 152
  year: 2024
  ident: 10.1016/j.apenergy.2025.125863_bb0210
  article-title: Exploring mushy zone constant in enthalpy-porosity methodology for accurate modeling convection-diffusion solid-liquid phase change of calcium chloride hexahydrate
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2024.107294
– volume: 346
  year: 2023
  ident: 10.1016/j.apenergy.2025.125863_bb0035
  article-title: Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121352
– ident: 10.1016/j.apenergy.2025.125863_bb0260
  doi: 10.1145/2939672.2939785
– volume: 327
  year: 2022
  ident: 10.1016/j.apenergy.2025.125863_bb0190
  article-title: Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120064
– volume: 38
  start-page: 439
  year: 2016
  ident: 10.1016/j.apenergy.2025.125863_bb0205
  article-title: Influence of the mushy zone constant on the numerical simulation of the melting and solidification process of phase change materials
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/B978-0-444-63428-3.50078-3
SSID ssj0002120
Score 2.510744
Snippet Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125863
SubjectTerms Machine learning
Melting response time
Phase change material
Thermal energy storage
XGBoost algorithm
Title The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems
URI https://dx.doi.org/10.1016/j.apenergy.2025.125863
Volume 390
WOSCitedRecordID wos001476682300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002120
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQqyktz4FY52Gs7to8VBBWEqh4Kys3yYzd1ldqWY1f5HfyM_srOeHcdAxWlBy5OZO3Dm_my--34m1nG3tvScUSYSSvF5djyuJ1ZaR44VpK4RN89Yfdv8H98C05OwsUiOp1Mrk0szNUqKMtws4nq_2pqvIfGptDZe5h7aBRv4Hc0Ol7R7Hj9Z8PXVUsqIEU0L3u9pDAHRCyJbtYNvaBpDy_Fqtc9N0oqK_qz5nsV9HlCQvY-9gBbaNWT96rIhnzzG6vtUmwzoY6IveIEvzoUKpKQFJekBVqP0qGbTLea9aqSw5yj3LCnoiCvy3L7ukhLArrRzU_6FJbjqlymxaiw9nwvOnHeFWNvBvfJTariOU0Ulz2zaFc3nqFddaKonmORkoVqUvxj-leeiItpUqtRTKmL6bbCr_m2f1sHB3WiEb5dxKadmNqJVTsP2C4P_AgXgd2jL_PF12Hd5zoJqBnBKB799ie6nQqN6M3ZU_ZE70vgSOHpGZuIco89HmWr3GP7821QJBbVq8L6OfuJkIMBclBJ0JADAzloK9CQAw05MJADghxV6iEHCnIwQA6KEsaQAwU50JADNWDQkAMNuRfs--f52cdjS5_1YWVIoVpr5qWC6KKUEQ-RpXp-JLjt5dLzZSqEE0ruCMmDILMzmSLnxW1xluZJ4HESG2TuPtspq1K8ZGCLYObhPiB08JPnuGcPRO5Gvi2ixEXjHDDf_OxxphPh03ksq_jvhj9gH4Z6tUoFc2eNyFg11oRWEdUYAXtH3Vf37u01e7T9R71hO23TibfsYXbVFuvmnUbrDfsPzJo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+machine+learning+to+predict+melting+response+time+of+phase+change+materials+in+triplex-tube+latent+thermal+energy+storage+systems&rft.jtitle=Applied+energy&rft.au=Yan%2C+Peiliang&rft.au=Wen%2C+Chuang&rft.au=Ding%2C+Hongbing&rft.au=Wang%2C+Xuehui&rft.date=2025-07-15&rft.issn=0306-2619&rft.volume=390&rft.spage=125863&rft_id=info:doi/10.1016%2Fj.apenergy.2025.125863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2025_125863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon