The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems
Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 390; S. 125863 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.07.2025
|
| Schlagworte: | |
| ISSN: | 0306-2619 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of a novel triplex-tube thermal energy storage system incorporating phase change materials and Y-shaped fins to enhance heat transfer. A numerical model based on the enthalpy-porosity method was developed to simulate the melting process, resulting in a dataset comprising 60 cases with melting response times ranging from 15 to 45 min under varying design and operational conditions. The key parameters investigated include fin angle (10°–30°), fin width (5–15 mm), and heat transfer fluid temperature (60 °C–80 °C). Prior to model development, variable independence was validated to ensure robust predictions. Four machine learning algorithms—polynomial regression, support vector regression, random forest regression, and extreme gradient boosting (XGBoost)—were employed, with hyperparameter optimization performed using a Bayesian approach. The XGBoost model demonstrated superior predictive capability, achieving an accuracy of 92 %. Feature importance analysis revealed that fin width and heat transfer fluid temperature were the dominant factors, contributing 51 % and 47 % to the prediction variance, respectively, whereas fin angle had a marginal influence of 2 %. This work provides a novel application of machine learning techniques to the design and optimization of thermal energy storage systems, offering valuable insights into improving their melting performance and operational efficiency.
•Y-shaped fins to enhance phase change material charging performance in latent thermal energy storage systems.•Predicting melting response time using four machine learning methods.•Evaluation of model performance using mean square error and coefficient of determination.•Conducted Feature importance evaluation to guide fin improvements. |
|---|---|
| AbstractList | Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of a novel triplex-tube thermal energy storage system incorporating phase change materials and Y-shaped fins to enhance heat transfer. A numerical model based on the enthalpy-porosity method was developed to simulate the melting process, resulting in a dataset comprising 60 cases with melting response times ranging from 15 to 45 min under varying design and operational conditions. The key parameters investigated include fin angle (10°–30°), fin width (5–15 mm), and heat transfer fluid temperature (60 °C–80 °C). Prior to model development, variable independence was validated to ensure robust predictions. Four machine learning algorithms—polynomial regression, support vector regression, random forest regression, and extreme gradient boosting (XGBoost)—were employed, with hyperparameter optimization performed using a Bayesian approach. The XGBoost model demonstrated superior predictive capability, achieving an accuracy of 92 %. Feature importance analysis revealed that fin width and heat transfer fluid temperature were the dominant factors, contributing 51 % and 47 % to the prediction variance, respectively, whereas fin angle had a marginal influence of 2 %. This work provides a novel application of machine learning techniques to the design and optimization of thermal energy storage systems, offering valuable insights into improving their melting performance and operational efficiency.
•Y-shaped fins to enhance phase change material charging performance in latent thermal energy storage systems.•Predicting melting response time using four machine learning methods.•Evaluation of model performance using mean square error and coefficient of determination.•Conducted Feature importance evaluation to guide fin improvements. |
| ArticleNumber | 125863 |
| Author | Yang, Yan Yan, Peiliang Wen, Chuang Ding, Hongbing Wang, Xuehui |
| Author_xml | – sequence: 1 givenname: Peiliang surname: Yan fullname: Yan, Peiliang organization: School of Energy and Power Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Chuang surname: Wen fullname: Wen, Chuang email: c.wen@reading.ac.uk organization: School of the Built Environment, University of Reading, Reading RG6 6AH, United Kingdom – sequence: 3 givenname: Hongbing surname: Ding fullname: Ding, Hongbing organization: School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Xuehui surname: Wang fullname: Wang, Xuehui organization: School of Mechanical & Materials Engineering, University College Dublin, Dublin D04 V1W8, Ireland – sequence: 5 givenname: Yan surname: Yang fullname: Yang, Yan email: y.yang7@exeter.ac.uk organization: Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom |
| BookMark | eNqFkN1OwyAYQLmYidv0FQwv0Ams7brEC83iX7LEm3lNKPtYWVpo4NO41_CJpaneeLMLQiA554MzIxPnHRByw9mCM17eHheqBwfhcFoIJooFF0VVLidkypaszETJ15dkFuORMSa4YFPyvWuA9h7BoVUt9YZ2SjfWAW1BBWfdgaKnfYC91Ug7aHG4ChB77yJQtB0MUN-odNKNcgdIBoSQbJFaRzHYvoWvDD_q5FTDIIoNhC5NG19KI_qgEhdPEaGLV-TCJBiuf_c5eX963G1esu3b8-vmYZvpZSkwK_MamMiFMWtRVXydF2sQLN-bvDA1AK-M4GDEaqWZNjVfFZUodb1Xq1yItPRyTu5Grw4-xgBGaosKrXcYlG0lZ3JoKo_yr6kcmsqxacLLf3gfbKfC6Tx4P4KQPvdpIcioLTidEgfQKPfenlP8ALjbneM |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_138452 crossref_primary_10_1016_j_est_2025_117464 crossref_primary_10_1016_j_applthermaleng_2025_128365 crossref_primary_10_1016_j_egyai_2025_100602 crossref_primary_10_1016_j_est_2025_118204 |
| Cites_doi | 10.1016/j.apenergy.2020.114566 10.1016/j.scs.2023.104521 10.1016/j.tranpol.2023.09.010 10.1016/j.energy.2023.127227 10.1016/j.rser.2012.05.030 10.1016/j.enbuild.2013.09.007 10.1016/j.applthermaleng.2021.117997 10.1016/j.scs.2023.104960 10.1016/j.est.2023.107912 10.1016/j.rineng.2023.101412 10.1016/0017-9310(82)90242-3 10.1016/j.ijheatmasstransfer.2006.10.007 10.1016/j.ijheatmasstransfer.2013.02.030 10.1016/j.est.2023.109188 10.1016/j.est.2021.102458 10.1016/j.est.2021.102672 10.1016/j.est.2022.104620 10.1016/j.est.2023.108161 10.1016/j.tsep.2021.100963 10.1016/j.scs.2018.01.020 10.1016/j.ijheatmasstransfer.2006.12.017 10.1016/j.icheatmasstransfer.2023.106952 10.1016/j.apenergy.2022.120576 10.1016/j.apenergy.2023.122006 10.1016/j.scs.2022.104294 10.1016/j.renene.2022.02.035 10.1023/A:1010933404324 10.1016/j.ijthermalsci.2016.10.017 10.1007/BF00994018 10.1177/875647939000600106 10.1016/j.est.2022.104157 10.1080/10407788808913615 10.1016/S0017-9310(99)00024-1 10.1016/j.jtice.2023.104680 10.3390/electronics10222785 10.1016/j.enbuild.2023.113479 10.1016/j.renene.2020.12.057 10.1109/34.709601 10.1016/j.applthermaleng.2023.120114 10.1016/j.apenergy.2016.11.036 10.1007/BF00058655 10.1016/j.est.2023.108775 10.1016/j.icheatmasstransfer.2024.107294 10.1016/j.apenergy.2023.121352 10.1145/2939672.2939785 10.1016/j.apenergy.2022.120064 10.1016/B978-0-444-63428-3.50078-3 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.apenergy.2025.125863 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | 10_1016_j_apenergy_2025_125863 S0306261925005938 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAQXK AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c362t-64be0242ff928819459e204df45fbee18f21ef277c0cfb175826cbda7422742c3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001476682300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Tue Nov 18 21:44:02 EST 2025 Sat Nov 29 08:01:17 EST 2025 Sat May 24 17:07:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal energy storage XGBoost algorithm Phase change material Melting response time Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-64be0242ff928819459e204df45fbee18f21ef277c0cfb175826cbda7422742c3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apenergy.2025.125863 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apenergy_2025_125863 crossref_primary_10_1016_j_apenergy_2025_125863 elsevier_sciencedirect_doi_10_1016_j_apenergy_2025_125863 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-15 |
| PublicationDateYYYYMMDD | 2025-07-15 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yan, Fan, Han, Ding, Wen, Elbarghthi (bb0035) 2023; 346 Du, Calautit, Eames, Wu (bb0065) 2021; 168 Li, Zou, Sun, Zhang (bb0075) 2018; 40 Choure, Alam, Kumar (bb0050) 2023; 72 Palmer, Arshad, Yang, Wen (bb0100) 2023; 333 Mahdi, Nsofor (bb0030) 2017; 191 Goel, Dwivedi, Kumar, Kumar, Pandey, Chopra (bb0070) 2023; 69 Zavrl, Tomc, El Mankibi, Dovjak, Stritih (bb0085) 2023; 99 Yan, Fan, Yang, Ding, Arshad, Wen (bb0190) 2022; 327 Taylor (bb0235) 1990; 6 Tin (bb0255) 1998; 20 Jain, Kumar, Rakshit (bb0040) 2021; 48 Chuttar, Banerjee (bb0185) 2021; 10 Chen, Xi, Zhang, Wang, Cui, Long (bb0020) 2023; 224 Ye, Arıcı (bb0210) 2024; 152 Huang, Yao, Yang, Zhou, Luo, Shen (bb0115) 2022; 204 IPCC. Climate change 2023 synthesis report. 2023. Fini, Fattahi, Musavi (bb0180) 2023; 148 Chabot, Gosselin (bb0155) 2017; 112 Abilkhassenova, Memon, Ahmad, Saurbayeva, Kim (bb0045) 2023; 297 Ye, Arıcı (bb0195) 2023; 144 Yan, Fan, Zhang (bb0165) 2023; 273 Liu, Liu, Nie (bb0125) 2021; 40 Ermis, Erek, Dincer (bb0175) 2007; 50 Assis, Katsman, Ziskind, Letan (bb0150) 2007; 50 Breiman (bb0245) 2001; 45 Cortes, Vapnik (bb0240) 1995; 20 Abu-Hamdeh, Khoshaim, Alzahrani, Hatamleh (bb0025) 2022; 57 Wang, Amiri, Vafai (bb0145) 1999; 42 Rieger, Projahn, Beer (bb0140) 1982; 25 Brent, Voller, Reid (bb0200) 1988; 13 Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: Association for Computing Machinery; 2016. p. 785–94, numpages = 10. Xu, Lu, Zheng (bb0095) 2023; 93 Breiman (bb0250) 1996; 24 Agarwal, Prabhakar (bb0080) 2023; 88 Wallimann, Sticher (bb0170) 2023; 143 Khan, Alkhedher, Ramadan, Ghazal (bb0060) 2023; 73 Safari, Abolghasemi, Darvishvand, Kamkari (bb0230) 2021; 37 Zonouzi, Dadvar (bb0135) 2022; 49 Cai, Xu, Zhu, Hu, Li (bb0160) 2020; 262 Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, Nevada: Curran Associates Inc.; 2012. p. 2951–9. Hassan, El-Rayes (bb0015) 2024; 353 Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (bb0220) 2014; 68 Pouresmaieli, Ataei, Nouri Qarahasanlou, Barabadi (bb0010) 2023; 20 Hameter, Walter (bb0205) 2016; 38 Al-Abidi, Mat, Sopian, Sulaiman, Mohammad (bb0130) 2013; 61 Saraf, Panda, Gangawane (bb0110) 2023; 73 Huang, Yao, Yang, Zhou (bb0120) 2022; 188 Al-Abidi, Bin Mat, Sopian, Sulaiman, Lim, Th (bb0090) 2012; 16 Ye, Arıcı (bb0225) 2023; 147 Ye, Arıcı (bb0215) 2023; 144 Sarkar, Mestry, Mhaske (bb0055) 2022; 50 Nitsas, Koronaki (bb0105) 2021; 25 Uddin, Lu (bb0270) 2024 Hassan (10.1016/j.apenergy.2025.125863_bb0015) 2024; 353 Al-Abidi (10.1016/j.apenergy.2025.125863_bb0130) 2013; 61 Hameter (10.1016/j.apenergy.2025.125863_bb0205) 2016; 38 Fini (10.1016/j.apenergy.2025.125863_bb0180) 2023; 148 Choure (10.1016/j.apenergy.2025.125863_bb0050) 2023; 72 Ermis (10.1016/j.apenergy.2025.125863_bb0175) 2007; 50 Ye (10.1016/j.apenergy.2025.125863_bb0215) 2023; 144 Yan (10.1016/j.apenergy.2025.125863_bb0035) 2023; 346 Breiman (10.1016/j.apenergy.2025.125863_bb0245) 2001; 45 Saraf (10.1016/j.apenergy.2025.125863_bb0110) 2023; 73 Huang (10.1016/j.apenergy.2025.125863_bb0115) 2022; 204 10.1016/j.apenergy.2025.125863_bb0005 Agarwal (10.1016/j.apenergy.2025.125863_bb0080) 2023; 88 Taylor (10.1016/j.apenergy.2025.125863_bb0235) 1990; 6 Rieger (10.1016/j.apenergy.2025.125863_bb0140) 1982; 25 Yan (10.1016/j.apenergy.2025.125863_bb0165) 2023; 273 Zavrl (10.1016/j.apenergy.2025.125863_bb0085) 2023; 99 Tin (10.1016/j.apenergy.2025.125863_bb0255) 1998; 20 Zonouzi (10.1016/j.apenergy.2025.125863_bb0135) 2022; 49 Cai (10.1016/j.apenergy.2025.125863_bb0160) 2020; 262 Sarkar (10.1016/j.apenergy.2025.125863_bb0055) 2022; 50 Liu (10.1016/j.apenergy.2025.125863_bb0125) 2021; 40 Chabot (10.1016/j.apenergy.2025.125863_bb0155) 2017; 112 Palmer (10.1016/j.apenergy.2025.125863_bb0100) 2023; 333 Chuttar (10.1016/j.apenergy.2025.125863_bb0185) 2021; 10 Mahdi (10.1016/j.apenergy.2025.125863_bb0030) 2017; 191 Jain (10.1016/j.apenergy.2025.125863_bb0040) 2021; 48 Ye (10.1016/j.apenergy.2025.125863_bb0195) 2023; 144 Cortes (10.1016/j.apenergy.2025.125863_bb0240) 1995; 20 Assis (10.1016/j.apenergy.2025.125863_bb0150) 2007; 50 Brent (10.1016/j.apenergy.2025.125863_bb0200) 1988; 13 Huang (10.1016/j.apenergy.2025.125863_bb0120) 2022; 188 Nitsas (10.1016/j.apenergy.2025.125863_bb0105) 2021; 25 Yan (10.1016/j.apenergy.2025.125863_bb0190) 2022; 327 Du (10.1016/j.apenergy.2025.125863_bb0065) 2021; 168 Safari (10.1016/j.apenergy.2025.125863_bb0230) 2021; 37 Xu (10.1016/j.apenergy.2025.125863_bb0095) 2023; 93 Al-Abidi (10.1016/j.apenergy.2025.125863_bb0220) 2014; 68 Goel (10.1016/j.apenergy.2025.125863_bb0070) 2023; 69 Wang (10.1016/j.apenergy.2025.125863_bb0145) 1999; 42 10.1016/j.apenergy.2025.125863_bb0265 Li (10.1016/j.apenergy.2025.125863_bb0075) 2018; 40 Pouresmaieli (10.1016/j.apenergy.2025.125863_bb0010) 2023; 20 Chen (10.1016/j.apenergy.2025.125863_bb0020) 2023; 224 Ye (10.1016/j.apenergy.2025.125863_bb0225) 2023; 147 Khan (10.1016/j.apenergy.2025.125863_bb0060) 2023; 73 Breiman (10.1016/j.apenergy.2025.125863_bb0250) 1996; 24 10.1016/j.apenergy.2025.125863_bb0260 Al-Abidi (10.1016/j.apenergy.2025.125863_bb0090) 2012; 16 Abu-Hamdeh (10.1016/j.apenergy.2025.125863_bb0025) 2022; 57 Uddin (10.1016/j.apenergy.2025.125863_bb0270) 2024 Wallimann (10.1016/j.apenergy.2025.125863_bb0170) 2023; 143 Ye (10.1016/j.apenergy.2025.125863_bb0210) 2024; 152 Abilkhassenova (10.1016/j.apenergy.2025.125863_bb0045) 2023; 297 |
| References_xml | – volume: 57 year: 2022 ident: bb0025 article-title: Study of the flat plate solar collector’s efficiency for sustainable and renewable energy management in a building by a phase change material: containing paraffin-wax/graphene and paraffin-wax/graphene oxide carbon-based fluids publication-title: J Build Eng – volume: 99 year: 2023 ident: bb0085 article-title: Parametric study of an active-passive system for cooling application in buildings improved with free cooling for enhanced solidification publication-title: Sustain Cities Soc – volume: 25 start-page: 137 year: 1982 end-page: 147 ident: bb0140 article-title: Analysis of the heat transport mechanisms during melting around a horizontal circular cylinder publication-title: Int J Heat Mass Transf – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0245 article-title: Random forests publication-title: Mach Learn – volume: 112 start-page: 345 year: 2017 end-page: 357 ident: bb0155 article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations publication-title: Int J Therm Sci – volume: 50 start-page: 1790 year: 2007 end-page: 1804 ident: bb0150 article-title: Numerical and experimental study of melting in a spherical shell publication-title: Int J Heat Mass Transf – volume: 144 year: 2023 ident: bb0195 article-title: False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transfer – volume: 42 start-page: 3659 year: 1999 end-page: 3672 ident: bb0145 article-title: An experimental investigation of the melting process in a rectangular enclosure publication-title: Int J Heat Mass Transf – volume: 168 start-page: 1040 year: 2021 end-page: 1057 ident: bb0065 article-title: A state-of-the-art review of the application of phase change materials (PCM) in mobilized-thermal energy storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply publication-title: Renew Energy – volume: 297 year: 2023 ident: bb0045 article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide publication-title: Energ Build – volume: 16 start-page: 5802 year: 2012 end-page: 5819 ident: bb0090 article-title: Review of thermal energy storage for air conditioning systems publication-title: Renew Sust Energ Rev – volume: 73 year: 2023 ident: bb0060 article-title: Hybrid PCM-based thermal management for lithium-ion batteries: trends and challenges publication-title: J Energy Storage – volume: 50 start-page: 3163 year: 2007 end-page: 3175 ident: bb0175 article-title: Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network publication-title: Int J Heat Mass Transf – reference: Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe, Nevada: Curran Associates Inc.; 2012. p. 2951–9. – volume: 61 start-page: 684 year: 2013 end-page: 695 ident: bb0130 article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins publication-title: Int J Heat Mass Transf – reference: Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: Association for Computing Machinery; 2016. p. 785–94, numpages = 10. – volume: 224 year: 2023 ident: bb0020 article-title: Experimental study on nucleation and micro-explosion characteristics of emulsified heavy fuel oil droplets at elevated temperatures during evaporation publication-title: Appl Therm Eng – volume: 37 year: 2021 ident: bb0230 article-title: Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material publication-title: J Energy Storage – volume: 327 year: 2022 ident: bb0190 article-title: Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations publication-title: Appl Energy – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bb0250 article-title: Bagging predictors publication-title: Mach Learn – volume: 93 year: 2023 ident: bb0095 article-title: Thermodynamic optimization of cascaded PCMs charge process based on entransy dissipation extreme principle publication-title: Sustain Cities Soc – volume: 148 year: 2023 ident: bb0180 article-title: Machine learning prediction and multiobjective optimization for cooling enhancement of a plate battery using the chaotic water-microencapsulated PCM fluid flows publication-title: J Taiwan Inst Chem Eng – volume: 346 year: 2023 ident: bb0035 article-title: Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems publication-title: Appl Energy – volume: 40 start-page: 266 year: 2018 end-page: 273 ident: bb0075 article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM publication-title: Sustain Cities Soc – reference: IPCC. Climate change 2023 synthesis report. 2023. – volume: 48 year: 2021 ident: bb0040 article-title: Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: research progress, challenges, and recommendations publication-title: Sustain Energy Technol Assess – volume: 273 year: 2023 ident: bb0165 article-title: Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization publication-title: Energy – start-page: 14 year: 2024 ident: bb0270 article-title: Dataset meta-level and statistical features affect machine learning performance publication-title: Sci Rep – volume: 40 year: 2021 ident: bb0125 article-title: Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube publication-title: J Energy Storage – volume: 6 start-page: 35 year: 1990 end-page: 39 ident: bb0235 article-title: Interpretation of the correlation coefficient: a basic review publication-title: J Diagnostic Med Sonography – volume: 88 year: 2023 ident: bb0080 article-title: Energy and thermo-economic analysis of PCM integrated brick in composite climatic condition of Jaipur - a numerical study publication-title: Sustain Cities Soc – volume: 188 start-page: 890 year: 2022 end-page: 910 ident: bb0120 article-title: Melting performance assessments on a triplex-tube thermal energy storage system: optimization based on response surface method with natural convection publication-title: Renew Energy – volume: 68 start-page: 33 year: 2014 end-page: 41 ident: bb0220 article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins publication-title: Energ Build – volume: 262 year: 2020 ident: bb0160 article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest publication-title: Appl Energy – volume: 50 year: 2022 ident: bb0055 article-title: Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: a review publication-title: J Energy Storage – volume: 152 year: 2024 ident: bb0210 article-title: Exploring mushy zone constant in enthalpy-porosity methodology for accurate modeling convection-diffusion solid-liquid phase change of calcium chloride hexahydrate publication-title: Int Commun Heat Mass Transfer – volume: 20 year: 2023 ident: bb0010 article-title: Integration of renewable energy and sustainable development with strategic planning in the mining industry publication-title: Results Eng – volume: 69 year: 2023 ident: bb0070 article-title: PCM-assisted energy storage systems for solar-thermal applications: review of the associated problems and their mitigation strategies publication-title: J Energy Storage – volume: 10 start-page: 2785 year: 2021 ident: bb0185 article-title: Machine learning (ML) based thermal Management for Cooling of electronics chips by utilizing thermal energy storage (TES) in packaging that leverages phase change materials (PCM) publication-title: Electronics – volume: 25 year: 2021 ident: bb0105 article-title: Performance analysis of nanoparticles-enhanced PCM: an experimental approach publication-title: Thermal Sci Eng Progress – volume: 73 year: 2023 ident: bb0110 article-title: Performance analysis of hybrid expanded graphite-NiFe2O4 nanoparticles-enhanced eutectic PCM for thermal energy storage publication-title: J Energy Storage – volume: 38 start-page: 439 year: 2016 end-page: 444 ident: bb0205 article-title: Influence of the mushy zone constant on the numerical simulation of the melting and solidification process of phase change materials publication-title: Comput Aided Chem Eng – volume: 333 year: 2023 ident: bb0100 article-title: Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations publication-title: Appl Energy – volume: 204 year: 2022 ident: bb0115 article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system publication-title: Appl Therm Eng – volume: 143 start-page: 121 year: 2023 end-page: 131 ident: bb0170 article-title: On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement publication-title: Transp Policy – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: bb0255 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 72 year: 2023 ident: bb0050 article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system publication-title: J Energy Storage – volume: 147 year: 2023 ident: bb0225 article-title: Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transfer – volume: 144 year: 2023 ident: bb0215 article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transfer – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0240 article-title: Support-vector networks publication-title: Mach Learn – volume: 13 start-page: 297 year: 1988 end-page: 318 ident: bb0200 article-title: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal publication-title: Numerical Heat Transfer – volume: 353 year: 2024 ident: bb0015 article-title: Optimal use of renewable energy technologies during building schematic design phase publication-title: Appl Energy – volume: 191 start-page: 22 year: 2017 end-page: 34 ident: bb0030 article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination publication-title: Appl Energy – volume: 49 year: 2022 ident: bb0135 article-title: Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system publication-title: J Energy Storage – volume: 262 year: 2020 ident: 10.1016/j.apenergy.2025.125863_bb0160 article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114566 – ident: 10.1016/j.apenergy.2025.125863_bb0005 – volume: 48 year: 2021 ident: 10.1016/j.apenergy.2025.125863_bb0040 article-title: Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: research progress, challenges, and recommendations publication-title: Sustain Energy Technol Assess – volume: 93 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0095 article-title: Thermodynamic optimization of cascaded PCMs charge process based on entransy dissipation extreme principle publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2023.104521 – volume: 143 start-page: 121 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0170 article-title: On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement publication-title: Transp Policy doi: 10.1016/j.tranpol.2023.09.010 – volume: 273 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0165 article-title: Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization publication-title: Energy doi: 10.1016/j.energy.2023.127227 – volume: 16 start-page: 5802 year: 2012 ident: 10.1016/j.apenergy.2025.125863_bb0090 article-title: Review of thermal energy storage for air conditioning systems publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2012.05.030 – volume: 68 start-page: 33 year: 2014 ident: 10.1016/j.apenergy.2025.125863_bb0220 article-title: Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins publication-title: Energ Build doi: 10.1016/j.enbuild.2013.09.007 – volume: 204 year: 2022 ident: 10.1016/j.apenergy.2025.125863_bb0115 article-title: Comparison of solidification performance enhancement strategies for a triplex-tube thermal energy storage system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2021.117997 – volume: 99 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0085 article-title: Parametric study of an active-passive system for cooling application in buildings improved with free cooling for enhanced solidification publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2023.104960 – volume: 69 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0070 article-title: PCM-assisted energy storage systems for solar-thermal applications: review of the associated problems and their mitigation strategies publication-title: J Energy Storage doi: 10.1016/j.est.2023.107912 – volume: 20 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0010 article-title: Integration of renewable energy and sustainable development with strategic planning in the mining industry publication-title: Results Eng doi: 10.1016/j.rineng.2023.101412 – volume: 25 start-page: 137 year: 1982 ident: 10.1016/j.apenergy.2025.125863_bb0140 article-title: Analysis of the heat transport mechanisms during melting around a horizontal circular cylinder publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(82)90242-3 – volume: 50 start-page: 1790 year: 2007 ident: 10.1016/j.apenergy.2025.125863_bb0150 article-title: Numerical and experimental study of melting in a spherical shell publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2006.10.007 – volume: 61 start-page: 684 year: 2013 ident: 10.1016/j.apenergy.2025.125863_bb0130 article-title: Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.02.030 – volume: 73 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0110 article-title: Performance analysis of hybrid expanded graphite-NiFe2O4 nanoparticles-enhanced eutectic PCM for thermal energy storage publication-title: J Energy Storage doi: 10.1016/j.est.2023.109188 – volume: 37 year: 2021 ident: 10.1016/j.apenergy.2025.125863_bb0230 article-title: Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material publication-title: J Energy Storage doi: 10.1016/j.est.2021.102458 – volume: 40 year: 2021 ident: 10.1016/j.apenergy.2025.125863_bb0125 article-title: Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube publication-title: J Energy Storage doi: 10.1016/j.est.2021.102672 – volume: 50 year: 2022 ident: 10.1016/j.apenergy.2025.125863_bb0055 article-title: Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: a review publication-title: J Energy Storage doi: 10.1016/j.est.2022.104620 – volume: 72 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0050 article-title: A review on heat transfer enhancement techniques for PCM based thermal energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2023.108161 – volume: 25 year: 2021 ident: 10.1016/j.apenergy.2025.125863_bb0105 article-title: Performance analysis of nanoparticles-enhanced PCM: an experimental approach publication-title: Thermal Sci Eng Progress doi: 10.1016/j.tsep.2021.100963 – volume: 40 start-page: 266 year: 2018 ident: 10.1016/j.apenergy.2025.125863_bb0075 article-title: Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2018.01.020 – volume: 50 start-page: 3163 year: 2007 ident: 10.1016/j.apenergy.2025.125863_bb0175 article-title: Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2006.12.017 – volume: 147 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0225 article-title: Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2023.106952 – volume: 333 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0100 article-title: Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120576 – volume: 353 year: 2024 ident: 10.1016/j.apenergy.2025.125863_bb0015 article-title: Optimal use of renewable energy technologies during building schematic design phase publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.122006 – volume: 88 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0080 article-title: Energy and thermo-economic analysis of PCM integrated brick in composite climatic condition of Jaipur - a numerical study publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104294 – start-page: 14 year: 2024 ident: 10.1016/j.apenergy.2025.125863_bb0270 article-title: Dataset meta-level and statistical features affect machine learning performance publication-title: Sci Rep – volume: 188 start-page: 890 year: 2022 ident: 10.1016/j.apenergy.2025.125863_bb0120 article-title: Melting performance assessments on a triplex-tube thermal energy storage system: optimization based on response surface method with natural convection publication-title: Renew Energy doi: 10.1016/j.renene.2022.02.035 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.apenergy.2025.125863_bb0245 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 112 start-page: 345 year: 2017 ident: 10.1016/j.apenergy.2025.125863_bb0155 article-title: Solid-liquid phase change around a tube with periodic heating and cooling: scale analysis, numerical simulations and correlations publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2016.10.017 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.apenergy.2025.125863_bb0240 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 6 start-page: 35 year: 1990 ident: 10.1016/j.apenergy.2025.125863_bb0235 article-title: Interpretation of the correlation coefficient: a basic review publication-title: J Diagnostic Med Sonography doi: 10.1177/875647939000600106 – volume: 144 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0195 article-title: False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transfer – volume: 49 year: 2022 ident: 10.1016/j.apenergy.2025.125863_bb0135 article-title: Numerical investigation of using helical fins for the enhancement of the charging process of a latent heat thermal energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2022.104157 – volume: 13 start-page: 297 year: 1988 ident: 10.1016/j.apenergy.2025.125863_bb0200 article-title: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal publication-title: Numerical Heat Transfer doi: 10.1080/10407788808913615 – volume: 42 start-page: 3659 year: 1999 ident: 10.1016/j.apenergy.2025.125863_bb0145 article-title: An experimental investigation of the melting process in a rectangular enclosure publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(99)00024-1 – volume: 148 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0180 article-title: Machine learning prediction and multiobjective optimization for cooling enhancement of a plate battery using the chaotic water-microencapsulated PCM fluid flows publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2023.104680 – volume: 10 start-page: 2785 year: 2021 ident: 10.1016/j.apenergy.2025.125863_bb0185 article-title: Machine learning (ML) based thermal Management for Cooling of electronics chips by utilizing thermal energy storage (TES) in packaging that leverages phase change materials (PCM) publication-title: Electronics doi: 10.3390/electronics10222785 – volume: 297 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0045 article-title: Utilizing the Fanger thermal comfort model to evaluate the thermal, energy, economic, and environmental performance of PCM-integrated buildings in various climate zones worldwide publication-title: Energ Build doi: 10.1016/j.enbuild.2023.113479 – volume: 168 start-page: 1040 year: 2021 ident: 10.1016/j.apenergy.2025.125863_bb0065 article-title: A state-of-the-art review of the application of phase change materials (PCM) in mobilized-thermal energy storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply publication-title: Renew Energy doi: 10.1016/j.renene.2020.12.057 – volume: 20 start-page: 832 year: 1998 ident: 10.1016/j.apenergy.2025.125863_bb0255 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.709601 – volume: 224 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0020 article-title: Experimental study on nucleation and micro-explosion characteristics of emulsified heavy fuel oil droplets at elevated temperatures during evaporation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2023.120114 – volume: 144 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0215 article-title: 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology publication-title: Int Commun Heat Mass Transfer – volume: 57 year: 2022 ident: 10.1016/j.apenergy.2025.125863_bb0025 article-title: Study of the flat plate solar collector’s efficiency for sustainable and renewable energy management in a building by a phase change material: containing paraffin-wax/graphene and paraffin-wax/graphene oxide carbon-based fluids publication-title: J Build Eng – volume: 191 start-page: 22 year: 2017 ident: 10.1016/j.apenergy.2025.125863_bb0030 article-title: Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.036 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.apenergy.2025.125863_bb0250 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 – ident: 10.1016/j.apenergy.2025.125863_bb0265 – volume: 73 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0060 article-title: Hybrid PCM-based thermal management for lithium-ion batteries: trends and challenges publication-title: J Energy Storage doi: 10.1016/j.est.2023.108775 – volume: 152 year: 2024 ident: 10.1016/j.apenergy.2025.125863_bb0210 article-title: Exploring mushy zone constant in enthalpy-porosity methodology for accurate modeling convection-diffusion solid-liquid phase change of calcium chloride hexahydrate publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2024.107294 – volume: 346 year: 2023 ident: 10.1016/j.apenergy.2025.125863_bb0035 article-title: Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121352 – ident: 10.1016/j.apenergy.2025.125863_bb0260 doi: 10.1145/2939672.2939785 – volume: 327 year: 2022 ident: 10.1016/j.apenergy.2025.125863_bb0190 article-title: Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120064 – volume: 38 start-page: 439 year: 2016 ident: 10.1016/j.apenergy.2025.125863_bb0205 article-title: Influence of the mushy zone constant on the numerical simulation of the melting and solidification process of phase change materials publication-title: Comput Aided Chem Eng doi: 10.1016/B978-0-444-63428-3.50078-3 |
| SSID | ssj0002120 |
| Score | 2.510744 |
| Snippet | Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 125863 |
| SubjectTerms | Machine learning Melting response time Phase change material Thermal energy storage XGBoost algorithm |
| Title | The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems |
| URI | https://dx.doi.org/10.1016/j.apenergy.2025.125863 |
| Volume | 390 |
| WOSCitedRecordID | wos001476682300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002120 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEBQqyktz4FY52Gs7to8VBBWEqh4Kys3yYzd1ldqWY1f5HfyM_srOeHcdAxWlBy5OZO3Dm_my--34m1nG3tvScUSYSSvF5djyuJ1ZaR44VpK4RN89Yfdv8H98C05OwsUiOp1Mrk0szNUqKMtws4nq_2pqvIfGptDZe5h7aBRv4Hc0Ol7R7Hj9Z8PXVUsqIEU0L3u9pDAHRCyJbtYNvaBpDy_Fqtc9N0oqK_qz5nsV9HlCQvY-9gBbaNWT96rIhnzzG6vtUmwzoY6IveIEvzoUKpKQFJekBVqP0qGbTLea9aqSw5yj3LCnoiCvy3L7ukhLArrRzU_6FJbjqlymxaiw9nwvOnHeFWNvBvfJTariOU0Ulz2zaFc3nqFddaKonmORkoVqUvxj-leeiItpUqtRTKmL6bbCr_m2f1sHB3WiEb5dxKadmNqJVTsP2C4P_AgXgd2jL_PF12Hd5zoJqBnBKB799ie6nQqN6M3ZU_ZE70vgSOHpGZuIco89HmWr3GP7821QJBbVq8L6OfuJkIMBclBJ0JADAzloK9CQAw05MJADghxV6iEHCnIwQA6KEsaQAwU50JADNWDQkAMNuRfs--f52cdjS5_1YWVIoVpr5qWC6KKUEQ-RpXp-JLjt5dLzZSqEE0ruCMmDILMzmSLnxW1xluZJ4HESG2TuPtspq1K8ZGCLYObhPiB08JPnuGcPRO5Gvi2ixEXjHDDf_OxxphPh03ksq_jvhj9gH4Z6tUoFc2eNyFg11oRWEdUYAXtH3Vf37u01e7T9R71hO23TibfsYXbVFuvmnUbrDfsPzJo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+machine+learning+to+predict+melting+response+time+of+phase+change+materials+in+triplex-tube+latent+thermal+energy+storage+systems&rft.jtitle=Applied+energy&rft.au=Yan%2C+Peiliang&rft.au=Wen%2C+Chuang&rft.au=Ding%2C+Hongbing&rft.au=Wang%2C+Xuehui&rft.date=2025-07-15&rft.issn=0306-2619&rft.volume=390&rft.spage=125863&rft_id=info:doi/10.1016%2Fj.apenergy.2025.125863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2025_125863 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |