A Semi-supervised Gaussian Mixture Variational Autoencoder method for few-shot fine-grained fault diagnosis
In practical engineering, obtaining labeled high-quality fault samples poses challenges. Conventional fault diagnosis methods based on deep learning struggle to discern the underlying causes of mechanical faults from a fine-grained perspective, due to the scarcity of annotated data. To tackle those...
Uloženo v:
| Vydáno v: | Neural networks Ročník 178; s. 106482 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.10.2024
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In practical engineering, obtaining labeled high-quality fault samples poses challenges. Conventional fault diagnosis methods based on deep learning struggle to discern the underlying causes of mechanical faults from a fine-grained perspective, due to the scarcity of annotated data. To tackle those issue, we propose a novel semi-supervised Gaussian Mixed Variational Autoencoder method, SeGMVAE, aimed at acquiring unsupervised representations that can be transferred across fine-grained fault diagnostic tasks, enabling the identification of previously unseen faults using only the small number of labeled samples. Initially, Gaussian mixtures are introduced as a multimodal prior distribution for the Variational Autoencoder. This distribution is dynamically optimized for each task through an expectation–maximization (EM) algorithm, constructing a latent representation of the bridging task and unlabeled samples. Subsequently, a set variational posterior approach is presented to encode each task sample into the latent space, facilitating meta-learning. Finally, semi-supervised EM integrates the posterior of labeled data by acquiring task-specific parameters for diagnosing unseen faults. Results from two experiments demonstrate that SeGMVAE excels in identifying new fine-grained faults and exhibits outstanding performance in cross-domain fault diagnosis across different machines. Our code is available at https://github.com/zhiqan/SeGMVAE. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0893-6080 1879-2782 1879-2782 |
| DOI: | 10.1016/j.neunet.2024.106482 |