The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case

Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x n } generated by Dykstra's cyclic projections algorithm satisfies the inequality for all n, where P K (x) is the nearest point i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 15; číslo 5-6; s. 537 - 565
Hlavní autoři: Deutsch, Frank, Hundal, Hein
Médium: Journal Article
Jazyk:angličtina
Vydáno: Marcel Dekker, Inc 01.01.1994
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x n } generated by Dykstra's cyclic projections algorithm satisfies the inequality for all n, where P K (x) is the nearest point in K to x;, ρ is a constant, and 0 ≤c<1. In the case when K is the intersection of just two closed half-spaces, a stronger result is established: the sequence of iterates is either finite or satisfies for all n, where c is the cosine of the angle between the two functionals which define the half-spaces. Moreover, the constant c is the best possible. Applications are made to isotone and convex regression, and linear and quadratic programming.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569408816580