A general framework for solving inverse dynamics problems in multi-axis motion control

An inverse dynamics compensation (IDC) scheme for the execution of curvilinear paths by multi-axis motion controllers is proposed. For a path specified by a parametric curve r(ξ), the IDC scheme computes a real-time path correction Δr(ξ) that (theoretically) eliminates path deviations incurred by th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ISA transactions Ročník 95; s. 130 - 143
Hlavní autori: Zhu, Bohan, Farouki, Rida T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 01.12.2019
Predmet:
ISSN:0019-0578, 1879-2022, 1879-2022
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An inverse dynamics compensation (IDC) scheme for the execution of curvilinear paths by multi-axis motion controllers is proposed. For a path specified by a parametric curve r(ξ), the IDC scheme computes a real-time path correction Δr(ξ) that (theoretically) eliminates path deviations incurred by the inertia and damping of the machine axes. To exploit the linear time-invariant nature of the dynamic equations, the correction term is computed as a function of elapsed time t, and the corresponding curve parameter values ξ are only determined as the final step of the IDC scheme, through a real-time interpolator algorithm. It is shown that, in general, the correction term for P, PI, and PID controllers consists of derivative, natural, and integral terms (the integrand of the latter involving only the path r(ξ), and not its derivatives). The use of lead segments to minimize transient effects associated with the initial conditions is also discussed, and the performance of the method is illustrated by simulation results. The IDC scheme is expressed in terms of a linear differential operator formalism to provide a clear, general, and systematic development, amenable to further adaptations and extensions. •Real-time compensation for machine inertia and damping is achieved.•The procedure is essentially exact for P, PI, and PID controllers.•The method can result in significantly improved contouring accuracy.•A comprehensive treatment of the mathematical model is presented.•Simulation results are used to demonstrate the improved performance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0019-0578
1879-2022
1879-2022
DOI:10.1016/j.isatra.2019.05.012