Multi-layer convolutional dictionary learning network for signal denoising and its application to explainable rolling bearing fault diagnosis
As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fa...
Saved in:
| Published in: | ISA transactions Vol. 147; pp. 55 - 70 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.04.2024
|
| Subjects: | |
| ISSN: | 0019-0578, 1879-2022, 1879-2022 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fault diagnosis. Thus, denoising needs to be utilized as an essential step of vibration signal processing. Traditional denoising methods need expert knowledge to select hyperparameters. And data-driven methods based on deep learning lack interpretability and a clear justification for the design of architecture in a “black-box” deep neural network. An approach to systematically design neural networks is by unrolling algorithms, such as learned iterative soft-thresholding (LISTA). In this paper, the multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived by embedding a designed multi-layer sparse coder to the convolutional extension of LISTA. Then the multi-layer convolutional dictionary learning (ML-CDL) network for mechanical vibration signal denoising is proposed by unrolling ML-CLISTA. By combining ML-CDL network with a classifier, the proposed denoising method is applied to the explainable rolling bearing fault diagnosis. The experiments on two bearing datasets show the superiority of the ML-CDL network over other typical denoising methods.
•The multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived.•The multi-layer convolutional dictionary learning network is proposed.•The proposed method is applied to the explainable rolling bearing fault diagnosis. |
|---|---|
| AbstractList | As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fault diagnosis. Thus, denoising needs to be utilized as an essential step of vibration signal processing. Traditional denoising methods need expert knowledge to select hyperparameters. And data-driven methods based on deep learning lack interpretability and a clear justification for the design of architecture in a "black-box" deep neural network. An approach to systematically design neural networks is by unrolling algorithms, such as learned iterative soft-thresholding (LISTA). In this paper, the multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived by embedding a designed multi-layer sparse coder to the convolutional extension of LISTA. Then the multi-layer convolutional dictionary learning (ML-CDL) network for mechanical vibration signal denoising is proposed by unrolling ML-CLISTA. By combining ML-CDL network with a classifier, the proposed denoising method is applied to the explainable rolling bearing fault diagnosis. The experiments on two bearing datasets show the superiority of the ML-CDL network over other typical denoising methods.As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fault diagnosis. Thus, denoising needs to be utilized as an essential step of vibration signal processing. Traditional denoising methods need expert knowledge to select hyperparameters. And data-driven methods based on deep learning lack interpretability and a clear justification for the design of architecture in a "black-box" deep neural network. An approach to systematically design neural networks is by unrolling algorithms, such as learned iterative soft-thresholding (LISTA). In this paper, the multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived by embedding a designed multi-layer sparse coder to the convolutional extension of LISTA. Then the multi-layer convolutional dictionary learning (ML-CDL) network for mechanical vibration signal denoising is proposed by unrolling ML-CLISTA. By combining ML-CDL network with a classifier, the proposed denoising method is applied to the explainable rolling bearing fault diagnosis. The experiments on two bearing datasets show the superiority of the ML-CDL network over other typical denoising methods. As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fault diagnosis. Thus, denoising needs to be utilized as an essential step of vibration signal processing. Traditional denoising methods need expert knowledge to select hyperparameters. And data-driven methods based on deep learning lack interpretability and a clear justification for the design of architecture in a “black-box” deep neural network. An approach to systematically design neural networks is by unrolling algorithms, such as learned iterative soft-thresholding (LISTA). In this paper, the multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived by embedding a designed multi-layer sparse coder to the convolutional extension of LISTA. Then the multi-layer convolutional dictionary learning (ML-CDL) network for mechanical vibration signal denoising is proposed by unrolling ML-CLISTA. By combining ML-CDL network with a classifier, the proposed denoising method is applied to the explainable rolling bearing fault diagnosis. The experiments on two bearing datasets show the superiority of the ML-CDL network over other typical denoising methods. •The multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived.•The multi-layer convolutional dictionary learning network is proposed.•The proposed method is applied to the explainable rolling bearing fault diagnosis. As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault diagnosis of bearings. Nevertheless, the collected vibration signals cannot avoid interference from noises which has a negative influence on fault diagnosis. Thus, denoising needs to be utilized as an essential step of vibration signal processing. Traditional denoising methods need expert knowledge to select hyperparameters. And data-driven methods based on deep learning lack interpretability and a clear justification for the design of architecture in a "black-box" deep neural network. An approach to systematically design neural networks is by unrolling algorithms, such as learned iterative soft-thresholding (LISTA). In this paper, the multi-layer convolutional LISTA (ML-CLISTA) algorithm is derived by embedding a designed multi-layer sparse coder to the convolutional extension of LISTA. Then the multi-layer convolutional dictionary learning (ML-CDL) network for mechanical vibration signal denoising is proposed by unrolling ML-CLISTA. By combining ML-CDL network with a classifier, the proposed denoising method is applied to the explainable rolling bearing fault diagnosis. The experiments on two bearing datasets show the superiority of the ML-CDL network over other typical denoising methods. |
| Author | Yang, Rui Qin, Yi Chen, Dingliang Mao, Yongfang He, Biao |
| Author_xml | – sequence: 1 givenname: Yi surname: Qin fullname: Qin, Yi organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Rui surname: Yang fullname: Yang, Rui organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Biao surname: He fullname: He, Biao organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Dingliang orcidid: 0000-0001-7338-2407 surname: Chen fullname: Chen, Dingliang organization: State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China – sequence: 5 givenname: Yongfang orcidid: 0000-0003-3567-1886 surname: Mao fullname: Mao, Yongfang email: yfm@cqu.edu.cn organization: School of Automation, Chongqing University, Chongqing 400044, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38309975$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS1URKeFN0DISzYJ_smPzQIJVUArFbGBteW5uRl58NjBTgp9CN4ZZ6bdsIDVtezvnCufc0HOQgxIyEvOas5492Zfu2znZGvBRFMzXjPRPyEbrnpdlStxRjaMcV2xtlfn5CLnPWNMtFo9I-dSSaZ1327I78-Ln13l7T0mCjHcRb_MLgbr6eDgeEr31KNNwYUdDTj_jOk7HWOi2e2OGIbo8vpow0DdnKmdJu_ArmI6R4q_Jm9dsFuPNEXvV3RbDNc52rK-bLK7ELPLz8nT0fqMLx7mJfn28cPXq-vq9sunm6v3txXITsyVBBybHgR0je2gG1sFnVSNbcTQq6FBUMPYbVXfguRSw4gMlVYMwWrJOs3lJXl98p1S_LFgns3BZUDvbcC4ZCO0KBTv5Yq-ekCX7QEHMyV3KJGYxwgL8PYEQIo5JxwNuPn4-VKO84Yzs_Zl9ubUl1n7Moyb0lcRN3-JH_3_I3t3kmEJ6c5hMhkcBsDBJYTZDNH92-APAVC1gA |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2025_112370 crossref_primary_10_1063_5_0225222 crossref_primary_10_1177_14759217251364718 crossref_primary_10_1016_j_measurement_2025_118647 crossref_primary_10_1109_JIOT_2024_3520804 crossref_primary_10_1016_j_aei_2025_103434 crossref_primary_10_1016_j_ress_2025_111371 crossref_primary_10_1016_j_apacoust_2024_110301 crossref_primary_10_1063_5_0234838 crossref_primary_10_1109_TIM_2025_3527598 crossref_primary_10_12677_jisp_2024_132013 crossref_primary_10_1007_s11668_025_02225_4 crossref_primary_10_1088_2631_8695_adee7a crossref_primary_10_1016_j_neucom_2025_129996 crossref_primary_10_1016_j_measurement_2024_116332 crossref_primary_10_1109_TIM_2025_3595254 crossref_primary_10_1007_s10921_025_01212_x |
| Cites_doi | 10.1109/TIP.2018.2839891 10.1109/TPAMI.2019.2904255 10.3389/fenrg.2022.837823 10.1016/j.jvcir.2021.103095 10.1063/1.4887720 10.1109/PHM-Nanjing52125.2021.9612783 10.1109/ACCESS.2021.3086537 10.1177/1475921720970856 10.3390/math11194117 10.1016/j.jelekin.2023.102834 10.1109/ICSMD53520.2021.9670855 10.3390/app11041591 10.1109/TMM.2021.3094058 10.1016/j.ymssp.2022.110030 10.1109/TII.2019.2909305 10.1109/TIP.2017.2662206 10.3390/electronics12061461 10.1016/j.isatra.2022.05.005 10.1109/OJSP.2022.3172842 10.1007/s10845-021-01861-5 10.3390/s130608013 10.1016/j.isatra.2021.04.022 10.1109/ICASSP.2018.8462313 10.1109/CADIAG.2017.8075624 10.3390/make3040048 |
| ContentType | Journal Article |
| Copyright | 2024 ISA Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 ISA – notice: Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.isatra.2024.01.027 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 70 |
| ExternalDocumentID | 38309975 10_1016_j_isatra_2024_01_027 S0019057824000363 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AFXIZ AGCQF AGRNS BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c362t-3cef47c2c64a6c6f58c6384a42d78d4ec8df6b875c3139cfe0e8980eca9306913 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235953600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Sat Sep 27 20:58:08 EDT 2025 Mon Jul 21 05:57:01 EDT 2025 Tue Nov 18 21:05:40 EST 2025 Sat Nov 29 06:47:03 EST 2025 Sat Apr 20 15:59:35 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-layer sparse coding Sparse representation Unrolling Signal denoising Dictionary learning |
| Language | English |
| License | Copyright © 2024 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-3cef47c2c64a6c6f58c6384a42d78d4ec8df6b875c3139cfe0e8980eca9306913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7338-2407 0000-0003-3567-1886 |
| PMID | 38309975 |
| PQID | 2929131731 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2929131731 pubmed_primary_38309975 crossref_citationtrail_10_1016_j_isatra_2024_01_027 crossref_primary_10_1016_j_isatra_2024_01_027 elsevier_sciencedirect_doi_10_1016_j_isatra_2024_01_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mohguen W, Bekka RE. EMD-based denoising by customized thresholding. In: Proceedings of the 2017 international conference on control, automation and diagnosis (ICCAD); 2017, 19–21 Jan. 2017. p. 019–23. Jiang, Wang, Shen, Shi, Huang, Zhu, Wang (bib11) 2021; 20 Qin, Zou, Tang, Wang, Chen (bib23) 2020; 16 Sreter H, Giryes R, IEEE. Learned convolutional sparse coding [Proceedings Paper]. In: Proceedings of the 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP); 2018. p. 2191–5. Liu, Shu, Chen (bib16) 2021; 11 Ai T, Liu Z, Wang H, Han H. Robust Vibration Signal Denoising and Diagnosis Using Encoder-Decoder Networks with Cross-layer Residual Connection. 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing); 2021, 15–17 Oct. 2021. p. 1–5. Wang, Su (bib31) 2022; 131 Koppolu, Chemmangat (bib13) 2023; 73 Ma, Peng, Tian, Jiang (bib18) 2022; 24 Zhang, Zuo, Chen, Meng, Zhang (bib32) 2017; 26 Nigam, Srivastava (bib20) 2023; 11 Singh, Gangsar, Porwal, Atulkar (bib26) 2023; 34 Gregor K, LeCun Y. Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel; 2010. p. 399–406. Janjušević, Khalilian-Gourtani, Wang (bib10) 2022; 3 Simon D, Elad M. Rethinking the CSC model for natural images. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. Article 204). Curran Associates Inc; 2019. Buhrmester, Munch, Arens (bib2) 2021; 3 Han, Wang, Liu, Wang (bib5) 2022; 122 Zhang, Zuo, Zhang (bib33) 2018; 27 Zhou J, Wang S, Tong C, Zhao Z, Chen X. Weighted Basis Pursuit Denoising Algorithm and Its Application in Gear Fault Diagnosis. 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD); 2021, 21–23 Oct. 2021. p. 1–5. Khatib, Simon, Elad (bib12) 2021; 77 Qin, Jin, Zhang, He (bib22) 2021; 70 Papyan, Romano, Elad (bib21) 2017; 18 Liu, Zhang (bib15) 2023; 12 M.Ali, Abdelhafeez (bib17) 2022; 1 . Sulam, Aberdam, Beck, Elad (bib30) 2020; 42 He, Sun, Su, Chen, Zhao (bib7) 2022; 10 Su, Tan, Qi, Gu, Ji, Wang, Pecht (bib29) 2023; 188 He, Qin, Zhang (bib6) 2021; 70 Ismail MT, Mamat SS, Hamzah FM, Karim SAA. Forecasting Performance of Denoising Signal by Wavelet and Fourier Transforms using SARIMA Model. In: Proceedings of the 21st national symposium on mathematical sciences (SKSM21): germination of mathematical sciences education and research towards global sustainability; 2014. p. 961–6. Li, Ping, Wang, Chen, Cao (bib14) 2013; 13 School of mechanical engineering. Jiangnan University. Song, Baek, Kim (bib27) 2021; 9 Case western reserve university (CWRU) bearing data center. Iunusova E, Gonzalez MK, Szipka K, Archenti A. Early fault diagnosis in rolling element bearings: comparative analysis of a knowledge-based and a data-driven approach. J Intell Manuf; 2021. p. 1–21. 10.1016/j.isatra.2024.01.027_bib8 10.1016/j.isatra.2024.01.027_bib9 Li (10.1016/j.isatra.2024.01.027_bib14) 2013; 13 Wang (10.1016/j.isatra.2024.01.027_bib31) 2022; 131 M.Ali (10.1016/j.isatra.2024.01.027_bib17) 2022; 1 Khatib (10.1016/j.isatra.2024.01.027_bib12) 2021; 77 10.1016/j.isatra.2024.01.027_bib1 Koppolu (10.1016/j.isatra.2024.01.027_bib13) 2023; 73 Su (10.1016/j.isatra.2024.01.027_bib29) 2023; 188 10.1016/j.isatra.2024.01.027_bib3 10.1016/j.isatra.2024.01.027_bib4 Nigam (10.1016/j.isatra.2024.01.027_bib20) 2023; 11 10.1016/j.isatra.2024.01.027_bib19 Janjušević (10.1016/j.isatra.2024.01.027_bib10) 2022; 3 Qin (10.1016/j.isatra.2024.01.027_bib22) 2021; 70 10.1016/j.isatra.2024.01.027_bib34 He (10.1016/j.isatra.2024.01.027_bib7) 2022; 10 He (10.1016/j.isatra.2024.01.027_bib6) 2021; 70 Papyan (10.1016/j.isatra.2024.01.027_bib21) 2017; 18 Qin (10.1016/j.isatra.2024.01.027_bib23) 2020; 16 Buhrmester (10.1016/j.isatra.2024.01.027_bib2) 2021; 3 Liu (10.1016/j.isatra.2024.01.027_bib15) 2023; 12 Song (10.1016/j.isatra.2024.01.027_bib27) 2021; 9 Sulam (10.1016/j.isatra.2024.01.027_bib30) 2020; 42 Ma (10.1016/j.isatra.2024.01.027_bib18) 2022; 24 Singh (10.1016/j.isatra.2024.01.027_bib26) 2023; 34 Jiang (10.1016/j.isatra.2024.01.027_bib11) 2021; 20 Zhang (10.1016/j.isatra.2024.01.027_bib33) 2018; 27 Liu (10.1016/j.isatra.2024.01.027_bib16) 2021; 11 Han (10.1016/j.isatra.2024.01.027_bib5) 2022; 122 Zhang (10.1016/j.isatra.2024.01.027_bib32) 2017; 26 10.1016/j.isatra.2024.01.027_bib24 10.1016/j.isatra.2024.01.027_bib25 10.1016/j.isatra.2024.01.027_bib28 |
| References_xml | – volume: 70 start-page: 1 year: 2021 end-page: 9 ident: bib6 article-title: Rolling bearing fault diagnosis by using a new index: the compound weighted characteristic energy ratio publication-title: IEEE Trans Instrum Meas – volume: 13 start-page: 8013 year: 2013 end-page: 8041 ident: bib14 article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis publication-title: SENSORS – reference: Zhou J, Wang S, Tong C, Zhao Z, Chen X. Weighted Basis Pursuit Denoising Algorithm and Its Application in Gear Fault Diagnosis. 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD); 2021, 21–23 Oct. 2021. p. 1–5. – volume: 20 start-page: 2708 year: 2021 end-page: 2725 ident: bib11 article-title: An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis publication-title: Struct Health Monit – volume: 3 start-page: 966 year: 2021 end-page: 989 ident: bib2 article-title: Analysis of explainers of black box deep neural networks for computer vision: a survey publication-title: Mach Learn Knowl Extraction – volume: 11 start-page: 1591 year: 2021 ident: bib16 article-title: ECG signal denoising and reconstruction based on basis pursuit publication-title: Appl Sci – reference: Sreter H, Giryes R, IEEE. Learned convolutional sparse coding [Proceedings Paper]. In: Proceedings of the 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP); 2018. p. 2191–5. – volume: 26 start-page: 3142 year: 2017 end-page: 3155 ident: bib32 article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans Image Process – reference: Simon D, Elad M. Rethinking the CSC model for natural images. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. Article 204). Curran Associates Inc; 2019. – reference: Gregor K, LeCun Y. Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel; 2010. p. 399–406. – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: bib22 article-title: Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm publication-title: IEEE Trans Instrum Meas – volume: 27 start-page: 4608 year: 2018 end-page: 4622 ident: bib33 article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising publication-title: IEEE Trans Image Process – volume: 12 start-page: 1461 year: 2023 ident: bib15 article-title: A novel denoising algorithm based on wavelet and non-local moment mean filtering publication-title: Electronics – volume: 122 start-page: 13 year: 2022 end-page: 23 ident: bib5 article-title: Intelligent vibration signal denoising method based on non-local fully convolutional neural network for rolling bearings publication-title: ISA Trans – volume: 131 start-page: 650 year: 2022 end-page: 661 ident: bib31 article-title: An optimization method for motion blur image restoration and ringing suppression via texture mapping publication-title: ISA Trans – volume: 1 start-page: 8463 year: 2022 ident: bib17 article-title: DeepHAR-Net: a novel machine intelligence approach for human activity recognition from inertial sensors publication-title: Sustain Mach Intell J – reference: Case western reserve university (CWRU) bearing data center. – volume: 42 start-page: 1968 year: 2020 end-page: 1980 ident: bib30 article-title: On multi-layer basis pursuit, efficient algorithms and convolutional neural networks [Article] publication-title: IEEE Trans Pattern Anal Mach Intell – reference: Iunusova E, Gonzalez MK, Szipka K, Archenti A. Early fault diagnosis in rolling element bearings: comparative analysis of a knowledge-based and a data-driven approach. J Intell Manuf; 2021. p. 1–21. – volume: 9 start-page: 83786 year: 2021 end-page: 83796 ident: bib27 article-title: Forecasting stock market indices using padding-based fourier transform denoising and time series deep learning models publication-title: IEEE Access – reference: Ai T, Liu Z, Wang H, Han H. Robust Vibration Signal Denoising and Diagnosis Using Encoder-Decoder Networks with Cross-layer Residual Connection. 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing); 2021, 15–17 Oct. 2021. p. 1–5. – volume: 73 year: 2023 ident: bib13 article-title: Automatic selection of IMFs to denoise the sEMG signals using EMD publication-title: J Electromyogr Kinesiol – volume: 34 start-page: 931 year: 2023 end-page: 960 ident: bib26 article-title: Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review publication-title: J Intell Manuf – volume: 188 year: 2023 ident: bib29 article-title: An improved orthogonal matching pursuit method for denoising high-frequency ultrasonic detection signals of flip chips publication-title: Mech Syst Signal Process – reference: School of mechanical engineering. Jiangnan University. – reference: . – volume: 3 start-page: 196 year: 2022 end-page: 211 ident: bib10 article-title: CDLNet: noise-adaptive convolutional dictionary learning network for blind denoising and demosaicing publication-title: IEEE Open J Sign Proc – volume: 10 year: 2022 ident: bib7 article-title: Denoising method of nuclear signal based on sparse representation publication-title: Front Energy Res – volume: 16 start-page: 215 year: 2020 end-page: 227 ident: bib23 article-title: Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary publication-title: IEEE Trans Ind Inform – volume: 11 start-page: 4117 year: 2023 ident: bib20 article-title: Filtering of audio signals using discrete wavelet transforms publication-title: Mathematics – reference: Ismail MT, Mamat SS, Hamzah FM, Karim SAA. Forecasting Performance of Denoising Signal by Wavelet and Fourier Transforms using SARIMA Model. In: Proceedings of the 21st national symposium on mathematical sciences (SKSM21): germination of mathematical sciences education and research towards global sustainability; 2014. p. 961–6. – volume: 77 year: 2021 ident: bib12 article-title: Learned Greedy Method (LGM): A novel neural architecture for sparse coding and beyond publication-title: J Vis Commun Image Represent – reference: Mohguen W, Bekka RE. EMD-based denoising by customized thresholding. In: Proceedings of the 2017 international conference on control, automation and diagnosis (ICCAD); 2017, 19–21 Jan. 2017. p. 019–23. – volume: 24 start-page: 3157 year: 2022 end-page: 3168 ident: bib18 article-title: DBDnet: a deep boosting strategy for image denoising publication-title: IEEE Trans Multimed – volume: 18 start-page: 1 year: 2017 end-page: 52 ident: bib21 article-title: Convolutional neural networks analyzed via convolutional sparse coding [Article] publication-title: J Mach Learn Res – volume: 27 start-page: 4608 issue: 9 year: 2018 ident: 10.1016/j.isatra.2024.01.027_bib33 article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2839891 – volume: 42 start-page: 1968 issue: 8 year: 2020 ident: 10.1016/j.isatra.2024.01.027_bib30 article-title: On multi-layer basis pursuit, efficient algorithms and convolutional neural networks [Article] publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2904255 – ident: 10.1016/j.isatra.2024.01.027_bib25 – volume: 10 year: 2022 ident: 10.1016/j.isatra.2024.01.027_bib7 article-title: Denoising method of nuclear signal based on sparse representation publication-title: Front Energy Res doi: 10.3389/fenrg.2022.837823 – volume: 77 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib12 article-title: Learned Greedy Method (LGM): A novel neural architecture for sparse coding and beyond publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2021.103095 – ident: 10.1016/j.isatra.2024.01.027_bib8 doi: 10.1063/1.4887720 – ident: 10.1016/j.isatra.2024.01.027_bib1 doi: 10.1109/PHM-Nanjing52125.2021.9612783 – volume: 9 start-page: 83786 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib27 article-title: Forecasting stock market indices using padding-based fourier transform denoising and time series deep learning models publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3086537 – volume: 20 start-page: 2708 issue: 5 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib11 article-title: An adaptive and efficient variational mode decomposition and its application for bearing fault diagnosis publication-title: Struct Health Monit doi: 10.1177/1475921720970856 – volume: 11 start-page: 4117 issue: 19 year: 2023 ident: 10.1016/j.isatra.2024.01.027_bib20 article-title: Filtering of audio signals using discrete wavelet transforms publication-title: Mathematics doi: 10.3390/math11194117 – volume: 73 year: 2023 ident: 10.1016/j.isatra.2024.01.027_bib13 article-title: Automatic selection of IMFs to denoise the sEMG signals using EMD publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2023.102834 – ident: 10.1016/j.isatra.2024.01.027_bib34 doi: 10.1109/ICSMD53520.2021.9670855 – ident: 10.1016/j.isatra.2024.01.027_bib4 – volume: 1 start-page: 8463 year: 2022 ident: 10.1016/j.isatra.2024.01.027_bib17 article-title: DeepHAR-Net: a novel machine intelligence approach for human activity recognition from inertial sensors publication-title: Sustain Mach Intell J – volume: 11 start-page: 1591 issue: 4 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib16 article-title: ECG signal denoising and reconstruction based on basis pursuit publication-title: Appl Sci doi: 10.3390/app11041591 – volume: 24 start-page: 3157 year: 2022 ident: 10.1016/j.isatra.2024.01.027_bib18 article-title: DBDnet: a deep boosting strategy for image denoising publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2021.3094058 – volume: 188 year: 2023 ident: 10.1016/j.isatra.2024.01.027_bib29 article-title: An improved orthogonal matching pursuit method for denoising high-frequency ultrasonic detection signals of flip chips publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.110030 – ident: 10.1016/j.isatra.2024.01.027_bib24 – volume: 16 start-page: 215 issue: 1 year: 2020 ident: 10.1016/j.isatra.2024.01.027_bib23 article-title: Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2909305 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 10.1016/j.isatra.2024.01.027_bib32 article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2662206 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib6 article-title: Rolling bearing fault diagnosis by using a new index: the compound weighted characteristic energy ratio publication-title: IEEE Trans Instrum Meas – volume: 12 start-page: 1461 issue: 6 year: 2023 ident: 10.1016/j.isatra.2024.01.027_bib15 article-title: A novel denoising algorithm based on wavelet and non-local moment mean filtering publication-title: Electronics doi: 10.3390/electronics12061461 – volume: 131 start-page: 650 year: 2022 ident: 10.1016/j.isatra.2024.01.027_bib31 article-title: An optimization method for motion blur image restoration and ringing suppression via texture mapping publication-title: ISA Trans doi: 10.1016/j.isatra.2022.05.005 – volume: 3 start-page: 196 year: 2022 ident: 10.1016/j.isatra.2024.01.027_bib10 article-title: CDLNet: noise-adaptive convolutional dictionary learning network for blind denoising and demosaicing publication-title: IEEE Open J Sign Proc doi: 10.1109/OJSP.2022.3172842 – volume: 34 start-page: 931 issue: 3 year: 2023 ident: 10.1016/j.isatra.2024.01.027_bib26 article-title: Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review publication-title: J Intell Manuf doi: 10.1007/s10845-021-01861-5 – volume: 13 start-page: 8013 issue: 6 year: 2013 ident: 10.1016/j.isatra.2024.01.027_bib14 article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis publication-title: SENSORS doi: 10.3390/s130608013 – volume: 122 start-page: 13 year: 2022 ident: 10.1016/j.isatra.2024.01.027_bib5 article-title: Intelligent vibration signal denoising method based on non-local fully convolutional neural network for rolling bearings publication-title: ISA Trans doi: 10.1016/j.isatra.2021.04.022 – volume: 18 start-page: 1 year: 2017 ident: 10.1016/j.isatra.2024.01.027_bib21 article-title: Convolutional neural networks analyzed via convolutional sparse coding [Article] publication-title: J Mach Learn Res – ident: 10.1016/j.isatra.2024.01.027_bib28 doi: 10.1109/ICASSP.2018.8462313 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib22 article-title: Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm publication-title: IEEE Trans Instrum Meas – ident: 10.1016/j.isatra.2024.01.027_bib19 doi: 10.1109/CADIAG.2017.8075624 – ident: 10.1016/j.isatra.2024.01.027_bib3 – ident: 10.1016/j.isatra.2024.01.027_bib9 – volume: 3 start-page: 966 issue: 4 year: 2021 ident: 10.1016/j.isatra.2024.01.027_bib2 article-title: Analysis of explainers of black box deep neural networks for computer vision: a survey publication-title: Mach Learn Knowl Extraction doi: 10.3390/make3040048 |
| SSID | ssj0002598 |
| Score | 2.4373548 |
| Snippet | As a vital mechanical sub-component, the health monitoring of rolling bearings is important. Vibration signal analysis is a commonly used approach for fault... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | Dictionary learning Multi-layer sparse coding Signal denoising Sparse representation Unrolling |
| Title | Multi-layer convolutional dictionary learning network for signal denoising and its application to explainable rolling bearing fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.isatra.2024.01.027 https://www.ncbi.nlm.nih.gov/pubmed/38309975 https://www.proquest.com/docview/2929131731 |
| Volume | 147 |
| WOSCitedRecordID | wos001235953600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQc4IFqghEe1SBzgYOS318eAiloOFdAihZO1Xq8lV5YdxUmVP9H_0Z_JzD5sV1VVQOISRY7tXWm-zGu_mSHkXSxSxnOIVHPphU5Y5NxJY46chpJL-EEkQaGGTSSnp2yxSL9NJte2FuayTpqGbbfp8r-KGq6BsLF09i_E3b8ULsB3EDp8gtjh848Er0pqnZqDL6045WYxdRijihiQJ1fbjEijaeCKbYhcDrxNNm3V2eJFPFgYnXKjryq3y9oWXa1MU-8cXqhImRyWx4wuEviqbuz7npzNcSKFHU_eO_PfdRuDX1WvgUwO-8emv3Ss8q6fKt4OfASjMCssRObGAJv8hT-mvaikmi2sGVhMSlFjbVWkp_t8lFo3syQFSfs3lbfu12nUr-74awy5Hkhyy0TobMWFYkutsPOUH-rGrclgEnui4hluBPeBVFs8894hu34SpWxKducnR4uvvdWHMNJYfb1xW6apuIS317rLDborzFHuzvkT8tjEKXSu8bVHJrLZJ49G3Sv3yZ6xCx19b5qXf3hKrkbwozfgRwf4UQs_auBHAX5Uw4_28KMAPwrwoyP40XVLR_CjBn7UwI8q-NEefs_Izy9H55-PHTPywxHgSa2dQMgyTIQv4pDHIi4jJsBAhDz0i4QVoRSsKOMcYmwRQOgiSulKljJXCp5C7Jt6wXMybdpGviDU94VbcFfmMYTMTMrUlZEbxgWootzluZiRwEogE6YfPo5lqTNLfLzItNwylFvmehnIbUac_qml7gdzz_2JFW5mfFrtq2aAx3uefGuxkIHKx3M83sh202U-hDQe-P2BNyMHGiT9XgIWYC189PKf131FHg5_09dkul5t5BvyQFyuq251SHaSBTs04P8NrDXlhA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-layer+convolutional+dictionary+learning+network+for+signal+denoising+and+its+application+to+explainable+rolling+bearing+fault+diagnosis&rft.jtitle=ISA+transactions&rft.au=Qin%2C+Yi&rft.au=Yang%2C+Rui&rft.au=He%2C+Biao&rft.au=Chen%2C+Dingliang&rft.date=2024-04-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.eissn=1879-2022&rft.volume=147&rft.spage=55&rft.epage=70&rft_id=info:doi/10.1016%2Fj.isatra.2024.01.027&rft.externalDocID=S0019057824000363 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |