pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning

Summary Python is the most commonly used language for deep learning (DL). Existing Python packages for mass spectrometry imaging (MSI) data are not optimized for DL tasks. We, therefore, introduce pyM2aia, a Python package for MSI data analysis with a focus on memory-efficient handling, processing a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics (Oxford, England) Ročník 40; číslo 3
Hlavní autori: Cordes, Jonas, Enzlein, Thomas, Hopf, Carsten, Wolf, Ivo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 04.03.2024
Oxford Publishing Limited (England)
Predmet:
ISSN:1367-4811, 1367-4803, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Summary Python is the most commonly used language for deep learning (DL). Existing Python packages for mass spectrometry imaging (MSI) data are not optimized for DL tasks. We, therefore, introduce pyM2aia, a Python package for MSI data analysis with a focus on memory-efficient handling, processing and convenient data-access for DL applications. pyM2aia provides interfaces to its parent application M2aia, which offers interactive capabilities for exploring and annotating MSI data in imzML format. pyM2aia utilizes the image input and output routines, data formats, and processing functions of M2aia, ensures data interchangeability, and enables the writing of readable and easy-to-maintain DL pipelines by providing batch generators for typical MSI data access strategies. We showcase the package in several examples, including imzML metadata parsing, signal processing, ion-image generation, and, in particular, DL model training and inference for spectrum-wise approaches, ion-image-based approaches, and approaches that use spectral and spatial information simultaneously. Availability and implementation Python package, code and examples are available at (https://m2aia.github.io/m2aia)
Bibliografia:SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btae133