Perfect power testing
Bach and Sorenson present two algorithms for testing whether a number n is a perfect power, with average running time O( log 2 n) under the assumption that n is chosen uniformly from an interval of length at least ( log n) 3 log log log n . We modify their algorithms to reduce the interval to polyno...
Uložené v:
| Vydané v: | Information processing letters Ročník 58; číslo 2; s. 59 - 63 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
22.04.1996
Elsevier Science Elsevier Sequoia S.A |
| Predmet: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Bach and Sorenson present two algorithms for testing whether a number
n is a perfect power, with average running time
O(
log
2
n) under the assumption that
n is chosen uniformly from an interval of length at least (
log
n)
3
log
log
log
n
. We modify their algorithms to reduce the interval to polynomial size. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/0020-0190(96)00042-7 |