An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted 𝓁p‐penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regula...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications on pure and applied mathematics Ročník 57; číslo 11; s. 1413 - 1457
Hlavní autori: Daubechies, I., Defrise, M., De Mol, C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2004
Wiley
John Wiley and Sons, Limited
Predmet:
ISSN:0010-3640, 1097-0312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted 𝓁p‐penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such 𝓁p‐penalized problems with p < 2 is often advocated when one expects the underlying ideal noiseless solution to have a sparse expansion with respect to the basis under consideration. To compute the corresponding regularized solutions, we analyze an iterative algorithm that amounts to a Landweber iteration with thresholding (or nonlinear shrinkage) applied at each iteration step. We prove that this algorithm converges in norm. © 2004 Wiley Periodicals, Inc.
Bibliografia:ArticleID:CPA20042
NSF Grants - No. DMS-0070689; No. DMS-0219233
Action de Recherche Concertée - No. Nb 02/07-281
IAP-network in Statistics P5/24
ark:/67375/WNG-Z83KNMKD-7
FWO (Fund for Scientific Research - Flanders), Belgium - No. G.0174.03
AFOSR Grant - No. F49620-01-1-0099
istex:39034D4C676B5611F8DC991B07FD147B65460AD7
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.20042