Global well-posedness for Navier–Stokes equations in critical Fourier–Herz spaces

We prove the global well-posedness for the 3D Navier–Stokes equations in critical Fourier–Herz spaces, by making use of the Fourier localization method and the Littlewood–Paley theory. The advantage of working in Fourier–Herz spaces lies in that they are more adapted than classical Besov spaces, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis Jg. 75; H. 9; S. 3754 - 3760
Hauptverfasser: Cannone, Marco, Wu, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2012
Elsevier
Schlagworte:
ISSN:0362-546X, 1873-5215
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the global well-posedness for the 3D Navier–Stokes equations in critical Fourier–Herz spaces, by making use of the Fourier localization method and the Littlewood–Paley theory. The advantage of working in Fourier–Herz spaces lies in that they are more adapted than classical Besov spaces, for estimating the bilinear paraproduct of two distributions with the summation of their regularity indexes exactly zero. Our result is an improvement of a recent theorem by Lei and Lin (2011) [10].
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2012.01.029