Maritime Over the Horizon Sensor Integration: HFSWR Data Fusion Algorithm

In order to provide a constant and complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) at over the horizon (OTH) distances, a network of high frequency surface-wave-radars (HFSWR) slowly becomes a necessity. Since each HFSWR in the network tracks all the targe...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 852
Main Authors: Nikolic, Dejan, Stojkovic, Nikola, Popovic, Zdravko, Tosic, Nikola, Lekic, Nikola, Stankovic, Zoran, Doncov, Nebojsa
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2019
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to provide a constant and complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) at over the horizon (OTH) distances, a network of high frequency surface-wave-radars (HFSWR) slowly becomes a necessity. Since each HFSWR in the network tracks all the targets it detects independently of other radars in the network, there will be situations where multiple tracks are formed for a single vessel. The algorithm proposed in this paper utilizes radar tracks obtained from individual HFSWRs which are already processed by the multi-target tracking algorithm at the single radar level, and fuses them into a unique data stream. In this way, the data obtained from multiple HFSWRs originating from the very same target are weighted and combined into a single track. Moreover, the weighting approach significantly reduces inaccuracy. The algorithm is designed, implemented, and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of two HFSWRs. In order to validate the algorithm outputs, the position of the vessels was calculated by the algorithm and compared with the positions obtained from several coastal sites, with LAIS receivers and SAIS data provided by a SAIS provider.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2072-4292
2072-4292
DOI:10.3390/rs11070852