Extended Levinson and Chandrasekhar equations for general discrete-time linear estimation problems
Recursive algorithrms for the solution of linear least-squares estimation problems have been based mainly on state-space models. It has been known, however, that recursive Levinson-Whittle-Wiggins-Robinson (LWR) algorithms exist for stationary time-series, using only input-output information (i.e, c...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 23; no. 4; pp. 653 - 659 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.08.1978
|
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Recursive algorithrms for the solution of linear least-squares estimation problems have been based mainly on state-space models. It has been known, however, that recursive Levinson-Whittle-Wiggins-Robinson (LWR) algorithms exist for stationary time-series, using only input-output information (i.e, covariance matrices). By introducing a way of classifying stochastic processes in terms of an "index of nonstationarity" we derive extended LWR algorithms for nonstationary processes We show also how adding state-space structure to the covariance matrix allows us to specialize these general results to state-space type estimation algorithms. In particular, the Chandrasekhar equations are shown to be natural descendants of the extended LWR algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.1978.1101797 |