Online Mongolian Handwriting Recognition Based on Encoder–Decoder Structure with Language Model

Mongolian online handwriting recognition is a complex task due to the script’s intricate characters and extensive vocabulary. This study proposes a novel approach by integrating a pre-trained language model into the sequence-to-sequence(Seq2Seq) + attention mechanisms(AM) model to enhance recognitio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 12; H. 20; S. 4194
Hauptverfasser: Fan, Daoerji, Sun, Yuxin, Wang, Zhixin, Peng, Yanjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2023
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mongolian online handwriting recognition is a complex task due to the script’s intricate characters and extensive vocabulary. This study proposes a novel approach by integrating a pre-trained language model into the sequence-to-sequence(Seq2Seq) + attention mechanisms(AM) model to enhance recognition accuracy. Three fusion models, including former, latter, and complete fusion, are introduced, showing substantial improvements over the baseline model. The complete fusion model, combined with synchronized language model parameters, achieved the best results, significantly reducing character and word error rates. This research presents a promising solution for accurate Mongolian online handwriting recognition, offering practical applications in preserving and utilizing the Mongolian script.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12204194