Edge-LLM Inference With Cost-Aware Layer Allocation and Adaptive Scheduling

This paper addresses two key challenges in distributed Large Language Model (LLM) inference at the edge: 1) cost-efficient and fair task allocation, and 2) dynamic scheduling under deadline constraints. We propose two mechanisms: the Fair Cost-Efficient Incentive Mechanism (FCIM) for task and layer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 131614 - 131637
Hlavní autoři: Habibi, Sama, Ercetin, Ozgur
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addresses two key challenges in distributed Large Language Model (LLM) inference at the edge: 1) cost-efficient and fair task allocation, and 2) dynamic scheduling under deadline constraints. We propose two mechanisms: the Fair Cost-Efficient Incentive Mechanism (FCIM) for task and layer assignment, and the Adaptive Dynamic Scheduling Algorithm (ADSA) for execution scheduling on individual devices. FCIM is an auction-based mechanism that selects cost-effective, memory-feasible devices while minimizing task latency, reward cost, and device usage. Its adaptive reward design ensures positive utility and fairness, even under shifting system priorities. ADSA enables preemption-aware, deadline-driven scheduling by dynamically reordering tasks based on arrival time and workload characteristics. Simulations demonstrate that FCIM reduces communication overhead by 54.7% and task completion time by 36.9% compared to static and performance-driven baselines, while ADSA reduces queueing delay by 39% under strict deadline constraints.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2025.3592308