Sparse Adaptive Optimization Based on Low Rank Decomposition for Image Defect Detection
Low-rank optimization plays a pivotal role in image processing due to its inherent ability to capture low-dimensional structures and promote sparsity. Traditional low-rank decomposition methods aim to recover low-rank components and isolate sparse elements, but the structural integrity of the sparse...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 139433 - 139444 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!