A simple technique to improve linearized reformulations of fractional (hyperbolic) 0–1 programming problems

We consider reformulations of fractional (hyperbolic) 0–1 programming problems as equivalent mixed-integer linear programs (MILP). The key idea of the proposed technique is to exploit binary representations of certain linear combinations of the 0–1 decision variables. Consequently, under some mild c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 44; číslo 4; s. 479 - 486
Hlavní autoři: Borrero, Juan S., Gillen, Colin, Prokopyev, Oleg A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2016
Témata:
ISSN:0167-6377, 1872-7468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider reformulations of fractional (hyperbolic) 0–1 programming problems as equivalent mixed-integer linear programs (MILP). The key idea of the proposed technique is to exploit binary representations of certain linear combinations of the 0–1 decision variables. Consequently, under some mild conditions, the number of product terms that need to be linearized can be greatly decreased. We perform numerical experiments comparing the proposed approach against the previous MILP reformulations used in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2016.03.015