SERLogic: A Logic-Integrated Framework for Enhancing Sequential Recommendations
Sequential recommendation models are used to predict users' next top-K preferred items based on their historical interactions. However, these models often struggle in "fuzzy areas" where recommendation scores are near decision thresholds, leading to false positives and false negatives...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 72221 - 72234 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Sequential recommendation models are used to predict users' next top-K preferred items based on their historical interactions. However, these models often struggle in "fuzzy areas" where recommendation scores are near decision thresholds, leading to false positives and false negatives. To overcome this limitation, we propose <inline-formula> <tex-math notation="LaTeX">\textsf {SERLogic} </tex-math></inline-formula>, an innovative framework that incorporates logic rules, termed <inline-formula> <tex-math notation="LaTeX">\mathsf {TIE^{+}\!s} </tex-math></inline-formula>, into existing sequential recommendation models to enhance their accuracy without the need for training a new machine learning model. <inline-formula> <tex-math notation="LaTeX">\mathsf {TIE^{+}\!s} </tex-math></inline-formula> represent a novel class of graph prediction rules characterized by a dual graph pattern <inline-formula> <tex-math notation="LaTeX">\mathcal {Q} </tex-math></inline-formula> and a dependency <inline-formula> <tex-math notation="LaTeX">X \rightarrow (x, likes, y) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\mathcal {Q} </tex-math></inline-formula> exhibits a dual star structure, and X extends ML sequential recommendation models and 1-WL test as predicates. With <inline-formula> <tex-math notation="LaTeX">\textsf {SERLogic} </tex-math></inline-formula>, we show 1) validation problem for <inline-formula> <tex-math notation="LaTeX">\mathsf {TIE^{+}\!s} </tex-math></inline-formula> is in polynomial time (<inline-formula> <tex-math notation="LaTeX">\textsf {PTIME} </tex-math></inline-formula>), enabling efficient verification of whether a graph satisfies a set of <inline-formula> <tex-math notation="LaTeX">\mathsf {TIE^{+}\!s} </tex-math></inline-formula>; 2) creator-critic algorithm that iteratively learns high-quality <inline-formula> <tex-math notation="LaTeX">\mathsf {TIE^{+}\!s} </tex-math></inline-formula>; 3) parallel algorithm that applies the discovered <inline-formula> <tex-math notation="LaTeX">\mathsf {TIE^{+}\!s} </tex-math></inline-formula> to generate recommendations efficiently. Empirical evaluation on real-world datasets reveals that <inline-formula> <tex-math notation="LaTeX">\textsf {SERLogic} </tex-math></inline-formula> significantly enhances the performance of sequential recommendation models in terms of Recall@K and NDCG@K, while also achieving superior computational efficiency. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2025.3563977 |