Research on Short-Term Load Forecasting Based on Optimized GRU Neural Network
Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting. In order to solve the problem of modal aliasing in historical data, and fully explore the relationship between time series characteristics in...
Saved in:
| Published in: | Electronics (Basel) Vol. 11; no. 22; p. 3834 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2022
|
| Subjects: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting. In order to solve the problem of modal aliasing in historical data, and fully explore the relationship between time series characteristics in load data, this paper proposes a gated cyclic network model (SSA–GRU) based on sparrow algorithm optimization. Firstly, the complementary sets and empirical mode decomposition (EMD) are used to decompose the original data to obtain the characteristic components. The SSA–GRU combined model is used to predict the characteristic components, and finally obtain the prediction results, and complete the short-term load forecasting. Taking the real data of a company as an example, this paper compares the combined model CEEMD–SSA–GRU with EMD–SSA–GRU, SSA–GRU, and GRU models. Experimental results show that this model has better prediction effect than other models. |
|---|---|
| AbstractList | Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting. In order to solve the problem of modal aliasing in historical data, and fully explore the relationship between time series characteristics in load data, this paper proposes a gated cyclic network model (SSA–GRU) based on sparrow algorithm optimization. Firstly, the complementary sets and empirical mode decomposition (EMD) are used to decompose the original data to obtain the characteristic components. The SSA–GRU combined model is used to predict the characteristic components, and finally obtain the prediction results, and complete the short-term load forecasting. Taking the real data of a company as an example, this paper compares the combined model CEEMD–SSA–GRU with EMD–SSA–GRU, SSA–GRU, and GRU models. Experimental results show that this model has better prediction effect than other models. |
| Audience | Academic |
| Author | Wu, Han Li, Chao Li, Ji Guo, Quanjie Shao, Lei |
| Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-6579-3449 surname: Li fullname: Li, Chao – sequence: 2 givenname: Quanjie orcidid: 0000-0001-9120-8939 surname: Guo fullname: Guo, Quanjie – sequence: 3 givenname: Lei surname: Shao fullname: Shao, Lei – sequence: 4 givenname: Ji surname: Li fullname: Li, Ji – sequence: 5 givenname: Han surname: Wu fullname: Wu, Han |
| BookMark | eNp9kN9LwzAQx4NMcM79Bb4UfO5sktb2HufQKUwHc3suaXrZMttmJhmif70Z80FEvHu4H3w_d_A9J73OdEjIJU1GnENyjQ1Kb02npaOUMV7w9IT0WZJDDAxY70d_RobObZMQQIMu6ZOnBToUVm4i00UvG2N9vETbRjMj6ujeWJTCed2to1vhsD6I5juvW_0ZhuliFT3j3oomFP9u7OsFOVWicTj8rgOyur9bTh7i2Xz6OBnPYslvqI8roIzTlKGqEbJahKFSKcsrYBK4VFTyghasSLEAxXlNFReC1qAKVucpVHxAro53d9a87dH5cmv2tgsvS5ZzSCnkGQTV6KhaiwZL3SnjrZAha2y1DCYqHfbjPM0yKFiSBACOgLTGOYuqlNoLr00XQN2UNCkPjpd_OB5Y_ovdWd0K-_Ev9QVi7Ik5 |
| CitedBy_id | crossref_primary_10_3390_math12213353 crossref_primary_10_1016_j_engfailanal_2024_108693 crossref_primary_10_3390_electronics12071685 crossref_primary_10_1007_s10706_024_02845_x crossref_primary_10_3390_en17164142 crossref_primary_10_3390_pr13082336 crossref_primary_10_1016_j_optcom_2025_131838 crossref_primary_10_1051_e3sconf_202340904008 crossref_primary_10_3390_app15073625 crossref_primary_10_3390_en17215304 crossref_primary_10_1007_s00202_025_03236_y crossref_primary_10_3390_app14062656 crossref_primary_10_3390_en16041988 crossref_primary_10_1016_j_asoc_2025_113739 crossref_primary_10_1109_ACCESS_2025_3574409 |
| Cites_doi | 10.1109/ACCESS.2021.3060654 10.1109/59.932287 10.1023/A:1012094702855 10.3390/en7031576 10.1142/S0218488598000094 10.3390/en13092390 10.3233/JIFS-169283 10.1142/S0218127403008375 10.1109/ACCESS.2019.2937222 10.1016/j.energy.2021.120480 10.3390/en12061140 10.3390/en15010130 10.1109/TSG.2017.2686012 10.1080/00207160310001597233 10.1016/j.epsr.2005.09.018 10.1109/59.744480 10.1109/TSG.2018.2844307 10.3390/en11051138 10.1016/j.enbuild.2019.04.034 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics11223834 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A745598200 10_3390_electronics11223834 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-b9123142efde95da231bf427b92c93cf1c3818284e89f33d1f3aa1d9f82d749b3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887034700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 05:37:00 EST 2025 Tue Nov 04 18:30:56 EST 2025 Sat Nov 29 07:10:35 EST 2025 Tue Nov 18 22:12:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-b9123142efde95da231bf427b92c93cf1c3818284e89f33d1f3aa1d9f82d749b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6579-3449 0000-0001-9120-8939 |
| OpenAccessLink | https://www.proquest.com/docview/2739419759?pq-origsite=%requestingapplication% |
| PQID | 2739419759 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2739419759 gale_infotracacademiconefile_A745598200 crossref_citationtrail_10_3390_electronics11223834 crossref_primary_10_3390_electronics11223834 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Shi (ref_22) 2021; 12606 Mastorocostas (ref_5) 1999; 14 Liu (ref_9) 2016; 22 Rafi (ref_21) 2021; 9 Pandian (ref_12) 2006; 76 ref_24 ref_23 ref_10 Baladron (ref_13) 2014; 7 Farahat (ref_11) 2012; 7 ref_20 Ma (ref_8) 2017; 32 Kim (ref_18) 2019; 194 ref_3 Imani (ref_15) 2021; 227 Shi (ref_17) 2017; 9 Haq (ref_1) 2019; 7 Amjady (ref_7) 2001; 16 Kim (ref_14) 2000; 8 (ref_4) 2001; 31 Chen (ref_2) 2019; 10 Tsaur (ref_6) 2003; 80 Itoh (ref_16) 2003; 13 Hochreiter (ref_19) 1998; 6 |
| References_xml | – volume: 22 start-page: 151 year: 2016 ident: ref_9 article-title: Research on power load forecasting based on support vector machine publication-title: J. Balk. Tribol. Assoc. – volume: 7 start-page: 6209 year: 2012 ident: ref_11 article-title: The Using of Curve Fitting Prediction Optimized by Genetic Algorithms for Short-Term Load Forecasting publication-title: Int. Rev. Electr. Eng. – volume: 9 start-page: 32436 year: 2021 ident: ref_21 article-title: A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060654 – volume: 16 start-page: 498 year: 2001 ident: ref_7 article-title: Short-term hourly load forecasting using time-series modeling with peak load estimation capability publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.932287 – ident: ref_3 – volume: 31 start-page: 115 year: 2001 ident: ref_4 article-title: Local Regression-Based Short-Term Load Forecasting publication-title: J. Intell. Robot. Syst. doi: 10.1023/A:1012094702855 – volume: 7 start-page: 1576 year: 2014 ident: ref_13 article-title: Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems publication-title: Energies doi: 10.3390/en7031576 – volume: 6 start-page: 107 year: 1998 ident: ref_19 article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. doi: 10.1142/S0218488598000094 – ident: ref_10 doi: 10.3390/en13092390 – volume: 32 start-page: 3447 year: 2017 ident: ref_8 article-title: A combined model based on seasonal autoregressive integrated moving average and modified particle swarm optimization algorithm for electrical load forecasting publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169283 – volume: 13 start-page: 2739 year: 2003 ident: ref_16 article-title: DESIGNING CNN GENES publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127403008375 – volume: 8 start-page: 139 year: 2000 ident: ref_14 article-title: Implementation of short-term load forecasting expert systems in a real environment publication-title: Eng. Intell. Syst. Electr. Eng. Commun. – volume: 7 start-page: 125413 year: 2019 ident: ref_1 article-title: A New Hybrid Model for Short-Term Electricity Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937222 – volume: 227 start-page: 120480 year: 2021 ident: ref_15 article-title: Electrical load-temperature CNN for residential load forecasting publication-title: Energy doi: 10.1016/j.energy.2021.120480 – ident: ref_23 doi: 10.3390/en12061140 – ident: ref_24 doi: 10.3390/en15010130 – volume: 9 start-page: 5271 year: 2017 ident: ref_17 article-title: Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2686012 – volume: 80 start-page: 1351 year: 2003 ident: ref_6 article-title: Forecasting by fuzzy double exponential smoothing model publication-title: Int. J. Comput. Math. doi: 10.1080/00207160310001597233 – volume: 76 start-page: 541 year: 2006 ident: ref_12 article-title: Fuzzy approach for short term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2005.09.018 – volume: 14 start-page: 29 year: 1999 ident: ref_5 article-title: Fuzzy modeling for short term load forecasting using the orthogonal least squares method publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.744480 – volume: 10 start-page: 3943 year: 2019 ident: ref_2 article-title: Short-Term Load Forecasting With Deep Residual Networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2844307 – ident: ref_20 doi: 10.3390/en11051138 – volume: 194 start-page: 328 year: 2019 ident: ref_18 article-title: Recurrent inception convolution neural network for multi short-term load forecasting publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.04.034 – volume: 12606 start-page: e6676 year: 2021 ident: ref_22 article-title: Short-term load forecasting based on CNN-BiLSTM with Bayesian optimization and attention mechanism publication-title: Concurr. Comput. Pr. Exp. |
| SSID | ssj0000913830 |
| Score | 2.3267941 |
| Snippet | Accurate short-term load forecasting can ensure the safe and stable operation of power grids, but the nonlinear load increases the complexity of forecasting.... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3834 |
| SubjectTerms | Algorithms Artificial intelligence Cyclic loads Deep learning Forecasting Mathematical models Mathematical optimization Neural networks Optimization Prediction theory Time series |
| Title | Research on Short-Term Load Forecasting Based on Optimized GRU Neural Network |
| URI | https://www.proquest.com/docview/2739419759 |
| Volume | 11 |
| WOSCitedRecordID | wos000887034700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6I8qgxILFg0sdPEEyqoPKS2RLwELFH8iKgEbWkKAwO_nbs0LSAhFsYkTmLl7PvOzt33AexiSGClVYZJozgTVtRYUvU14yrVmiuMAPJamNtm0G6Hd3cyKjbcsiKtcuwTc0dtepr2yA8QZqVwZeDLw_4LI9Uo-rtaSGhMwwyxJJB0Q-Q_TPZYiPMy5NUR2RDH1f3Bl7ZMhoEGwhUXPwDpd7ecY83J4n97uQQLRZTp1EfDYhmmbHcF5r9xD65Ca5xz5_S6ztUjRuHsGr200-wlxiHBTp1klBLtHCHOGWp0gd7lufOOB6eXNw6xeuAr2qM08jW4OWlcH5-xQluBaV5zh0xJhCxXeDY1VvomwQOVCi9Q0tOS69TVBOWIXTaUKefGTXmSuEamoWcCIRVfh1K317Ub4PiuRR9pAl0LjAi1p_xAJULjOtAPhB-qMnjjDxzrgnic9C-eYlyAkFXiX6xShv3JTf0R78bfzffIcjHNSny2ToriAuwh8VvFdewJURVWq2XYHlsuLqZrFn-ZbfPvy1sw51H9Q16MuA2l4eDV7sCsfht2skEFZo4a7eiyAtOtj0YlH4t4LjpvRfefVb3qbw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RpVLpAegDsTxaH1r1UovEdjbxoap4lhW721W7VPSUxo8IJNilZCmiP4rfyMwmgVZC3DhwtOI4TvxpvrEz8w3AO3QJvPbGce2M5MqrFs-CyHJpcmulQQ9gkgvzoxP3esnBge5PwVWdC0NhlbVNnBhqN7J0Rr6GNKtVqONIfz79zalqFP1drUtolLDY85cXuGUrPrW3cH3fC7GzPdjc5VVVAW5lKxxzo9FYh0r43HkduQwbJlciNlpYLW0eWiIxtNo-0bmULsxlloVO54lwsdJG4rhPYFoR2Bsw3W93-z9vTnVIZTORQSlvJKUO1m6r2RTo2iBBSvUfBd5NBBN225l7bN9lHmYrP5qtl8B_AVN--BKe_6Ou-Aq6dVQhGw3Z90PcZ_AB8hDrjDLHqCSpzQoK-mYbyOSOOn1F-3ly9BcbX77tM9ItwUf0ykD517D_IO-zAI3haOgXgUWhRxZwsW3FTiVWmCg2mbK4041iFSWmCaJe0NRW0upU4eM4xS0WoSC9AwVN-Hhz02mpLHJ_9w-ElJTsDo5tsyp9AmdICl7pOs6ExBiDoAkrNVLSyiAV6S1Mlu6__Bae7Q66nbTT7u0tw4ygbI9J6uUKNMZn534Vnto_46Pi7E2FfQa_HhpW18JMRCM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglA58GipurBQH6h6qbWJ7azjA0KFsqXqdllBiyouIX5ErQS7ZbOA4Kfx65jJowWp6q0HjlYcx4nH8804M98APEOTIJhgPTfeSq6C6vM8ShyXtnBOWrQAqlyYD0M9GqXHx2a8AL_bXBgKq2x1YqWo_dTRGXkPYdao2OjE9IomLGK8M3hx9pVTBSn609qW06hFZD_8_IHuW_l8bwfXekOIwevDV294U2GAO9mP59waVNyxEqHwwSQ-x4YtlNDWCGekK2JHgIYaPKSmkNLHhczz2JsiFV4rYyWOewNuavQxKZxwnHw8P98hvs1URjXRkZQm6l3UtSnRyEGolOofMLwcEiqcG9z7n7_QfbjbWNdsu94OD2AhTJbhzl-ciytw0MYasumEvT9B74MfIjqx4TT3jAqVurykUHD2EvHdU6e3qFW_nP7Cxu67I0ZsJviIUR0-_xCOruV9VmFxMp2ENWBJHBAbvHZ97VXqhE20zZVD_zfRKkltB0S7uJlrCNep7sfnDB0vkojsEonowNb5TWc138jV3TdJajLSRji2y5ukCpwh8Xpl2zgTomiMog50W6nJGjVVZhci8-jqy-twG2UpG-6N9h_DkqAUkCofswuL89m38ARuue_z03L2tNoEDD5dt0z9AZ27S4Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Short-Term+Load+Forecasting+Based+on+Optimized+GRU+Neural+Network&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Chao&rft.au=Guo%2C+Quanjie&rft.au=Shao%2C+Lei&rft.au=Li%2C+Ji&rft.date=2022-11-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=22&rft.spage=3834&rft_id=info:doi/10.3390%2Felectronics11223834&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11223834 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |