Cognitive Adaptive Systems for Industrial Internet of Things Using Reinforcement Algorithm

Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 12; číslo 1; s. 217
Hlavní autori: Rajawat, Anand Singh, Goyal, S. B., Chauhan, Chetan, Bedi, Pradeep, Prasad, Mukesh, Jan, Tony
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2023
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industrial production systems to be flexible and resilient to respond to changes in real time. This study examines the use of RL in a wide range of adaptive cognitive systems with IIoT-edges in manufacturing processes. We propose a cognitive adaptive system using IIoT with RL (CAS-IIoT-RL) and our experimental analysis showed that the proposed model showed improvements with adaptive and dynamic decision controls in challenging industrial environments.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12010217