Cognitive Adaptive Systems for Industrial Internet of Things Using Reinforcement Algorithm

Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 12; H. 1; S. 217
Hauptverfasser: Rajawat, Anand Singh, Goyal, S. B., Chauhan, Chetan, Bedi, Pradeep, Prasad, Mukesh, Jan, Tony
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industrial production systems to be flexible and resilient to respond to changes in real time. This study examines the use of RL in a wide range of adaptive cognitive systems with IIoT-edges in manufacturing processes. We propose a cognitive adaptive system using IIoT with RL (CAS-IIoT-RL) and our experimental analysis showed that the proposed model showed improvements with adaptive and dynamic decision controls in challenging industrial environments.
AbstractList Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industrial production systems to be flexible and resilient to respond to changes in real time. This study examines the use of RL in a wide range of adaptive cognitive systems with IIoT-edges in manufacturing processes. We propose a cognitive adaptive system using IIoT with RL (CAS-IIoT-RL) and our experimental analysis showed that the proposed model showed improvements with adaptive and dynamic decision controls in challenging industrial environments.
Audience Academic
Author Chauhan, Chetan
Rajawat, Anand Singh
Bedi, Pradeep
Prasad, Mukesh
Jan, Tony
Goyal, S. B.
Author_xml – sequence: 1
  givenname: Anand Singh
  orcidid: 0000-0001-5940-5799
  surname: Rajawat
  fullname: Rajawat, Anand Singh
– sequence: 2
  givenname: S. B.
  orcidid: 0000-0002-8411-7630
  surname: Goyal
  fullname: Goyal, S. B.
– sequence: 3
  givenname: Chetan
  surname: Chauhan
  fullname: Chauhan, Chetan
– sequence: 4
  givenname: Pradeep
  surname: Bedi
  fullname: Bedi, Pradeep
– sequence: 5
  givenname: Mukesh
  orcidid: 0000-0002-7745-9667
  surname: Prasad
  fullname: Prasad, Mukesh
– sequence: 6
  givenname: Tony
  orcidid: 0000-0002-3114-8978
  surname: Jan
  fullname: Jan, Tony
BookMark eNp9kEtLAzEUhYMoWGt_gZuA69Y8ZiaT5VB8FAqCths3QybJTFNmkpqkQv-9qXUhIt7NPVzOdxLOFTi3zmoAbjCaUcrRne61jN5ZIwMmCCOC2RkYEcT4lBNOzn_oSzAJYYvScExLikbgbe46a6L50LBSYvclXg8h6iHA1nm4sGofojeiTzJqb3WEroWrjbFdgOuQFnzRxiav1IO2EVZ957yJm-EaXLSiD3ryvcdg_XC_mj9Nl8-Pi3m1nEpa4DhtMtUUiiGRlbJgvJQN4YKWZasyLblshJBCSaZyJbNcoJwIJguaI5XhhlCi6BjcnnJ33r3vdYj11u29TU_WhBUYY5KTMrlmJ1cnel0fPxx9Sk7ZejAyNdqadK9YRnGGKOMJ4CdAeheC120tTRTROJtA09cY1cf66z_qTyz9xe68GYQ__Et9AmnwkFI
CitedBy_id crossref_primary_10_1016_j_procs_2024_01_039
crossref_primary_10_3390_electronics13101832
crossref_primary_10_3390_app15105573
crossref_primary_10_1007_s43069_025_00492_3
crossref_primary_10_1109_ACCESS_2024_3499741
crossref_primary_10_3390_electronics13020332
crossref_primary_10_32604_cmc_2024_052509
Cites_doi 10.1002/ett.4650
10.1109/MNET.001.1800505
10.1155/2021/7179374
10.1145/3005745.3005750
10.1109/ICHMS49158.2020.9209435
10.1007/978-981-16-2164-2_26
10.1007/s11633-020-1229-0
10.1016/j.cogsys.2018.11.005
10.1109/COMST.2021.3073036
10.1109/ICHMS53169.2021.9582624
10.1007/s00502-018-0614-7
10.1201/9781003337874
10.1016/j.compeleceng.2022.108164
10.1109/EAIS48028.2020.9122759
10.1007/s12083-021-01169-4
10.3390/a14080240
10.1098/rsfs.2018.0041
10.1155/2021/6876688
10.36227/techrxiv.19313318
10.3390/jsan9020021
10.1109/SEAMS51251.2021.00035
10.1007/s11432-020-2955-6
10.3390/s21227518
10.1109/IECON.2017.8216594
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics12010217
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A743140379
10_3390_electronics12010217
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c361t-b4db6d70a48c6798cb29a388fd4ec9cbaacadc7d5dc45a052a7c6350d41b232d3
IEDL.DBID P5Z
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909287600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Tue Sep 23 21:48:42 EDT 2025
Tue Nov 04 18:37:38 EST 2025
Sat Nov 29 07:14:09 EST 2025
Tue Nov 18 21:27:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-b4db6d70a48c6798cb29a388fd4ec9cbaacadc7d5dc45a052a7c6350d41b232d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5940-5799
0000-0002-7745-9667
0000-0002-3114-8978
0000-0002-8411-7630
OpenAccessLink https://www.proquest.com/docview/2761112528?pq-origsite=%requestingapplication%
PQID 2761112528
PQPubID 2032404
ParticipantIDs proquest_journals_2761112528
gale_infotracacademiconefile_A743140379
crossref_citationtrail_10_3390_electronics12010217
crossref_primary_10_3390_electronics12010217
PublicationCentury 2000
PublicationDate 2023-01-01
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kegyes (ref_14) 2021; 2021
Shilpa (ref_28) 2022; 102
ref_12
ref_11
Chen (ref_5) 2019; 33
You (ref_10) 2021; 64
ref_19
ref_18
ref_17
Marx (ref_2) 2019; 56
ref_15
Alhasnawi (ref_4) 2020; 63
Goyal (ref_27) 2021; 14
Kolchinsky (ref_13) 2018; 8
ref_24
ref_23
ref_22
ref_21
ref_20
ref_1
Siafara (ref_8) 2018; 135
Chen (ref_16) 2021; 23
ref_29
ref_26
Li (ref_9) 2020; 17
Rajawat (ref_25) 2021; 2021
ref_7
Coralie (ref_3) 2019; 190
ref_6
References_xml – ident: ref_7
  doi: 10.1002/ett.4650
– volume: 33
  start-page: 61
  year: 2019
  ident: ref_5
  article-title: Improving cognitive ability of edge intelligent IIoT through machine learning
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.1800505
– volume: 2021
  start-page: 7179374
  year: 2021
  ident: ref_14
  article-title: The Applicability of Reinforcement Learning Methods in the Development of Industry 4.0 Applications
  publication-title: Complexity
  doi: 10.1155/2021/7179374
– ident: ref_21
  doi: 10.1145/3005745.3005750
– ident: ref_24
– ident: ref_19
  doi: 10.1109/ICHMS49158.2020.9209435
– ident: ref_26
  doi: 10.1007/978-981-16-2164-2_26
– volume: 17
  start-page: 417
  year: 2020
  ident: ref_9
  article-title: Controller Optimization for Multirate Systems Based on Reinforcement Learning
  publication-title: Int. J. Autom. Comput
  doi: 10.1007/s11633-020-1229-0
– volume: 56
  start-page: 56
  year: 2019
  ident: ref_2
  article-title: Extractive Document Summarization Using an Adaptive, Knowledge Based Cognitive Model
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.11.005
– volume: 23
  start-page: 1659
  year: 2021
  ident: ref_16
  article-title: Deep reinforcement learning for Internet of Things: A comprehensive survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3073036
– ident: ref_20
  doi: 10.1109/ICHMS53169.2021.9582624
– volume: 135
  start-page: 270
  year: 2018
  ident: ref_8
  article-title: SAMBA -an architecture for adaptive cognitive control of distributed Cyber-Physical Production Systems based on its self-awareness
  publication-title: Elektrotech. Inftech
  doi: 10.1007/s00502-018-0614-7
– ident: ref_23
  doi: 10.1201/9781003337874
– volume: 102
  start-page: 108164
  year: 2022
  ident: ref_28
  article-title: Deep learning based optimised data transmission over 5G networks with Lagrangian encoder
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108164
– ident: ref_6
– ident: ref_12
  doi: 10.1109/EAIS48028.2020.9122759
– volume: 14
  start-page: 3235
  year: 2021
  ident: ref_27
  article-title: Deep learning application for sensing available spectrum for cognitive radio: An ECRNN approach
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-021-01169-4
– ident: ref_1
  doi: 10.3390/a14080240
– ident: ref_29
– volume: 8
  start-page: 20180041
  year: 2018
  ident: ref_13
  article-title: Semantic information, autonomous agency and non-equilibrium statistical physics
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2018.0041
– volume: 2021
  start-page: 6876688
  year: 2021
  ident: ref_25
  article-title: Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/6876688
– ident: ref_17
  doi: 10.36227/techrxiv.19313318
– ident: ref_15
  doi: 10.3390/jsan9020021
– volume: 190
  start-page: 105290
  year: 2019
  ident: ref_3
  article-title: Adaptive Early Classification of Temporal Sequences Using Deep Reinforcement Learning
  publication-title: Knowl.-Based Syst.
– ident: ref_11
  doi: 10.1109/SEAMS51251.2021.00035
– volume: 63
  start-page: 1006
  year: 2020
  ident: ref_4
  article-title: Internet of Things (IoT) for smart grids: A comprehensive review
  publication-title: J. Xi’an Univ. Archit
– volume: 64
  start-page: 110301
  year: 2021
  ident: ref_10
  article-title: Towards 6G wireless communication networks: Vision, enabling technologies and new paradigm shifts
  publication-title: Sci. China Inf. Sci
  doi: 10.1007/s11432-020-2955-6
– ident: ref_18
  doi: 10.3390/s21227518
– ident: ref_22
  doi: 10.1109/IECON.2017.8216594
SSID ssj0000913830
Score 2.3423784
Snippet Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 217
SubjectTerms Adaptive systems
Algorithms
Automation
Cognitive ability
Computers
Datasets
Deep learning
Factories
Industrial applications
Industrial Internet of Things
Intelligence
Machine learning
Manufacturing
Product development
Reinforcement learning (Machine learning)
Semantics
Title Cognitive Adaptive Systems for Industrial Internet of Things Using Reinforcement Algorithm
URI https://www.proquest.com/docview/2761112528
Volume 12
WOSCitedRecordID wos000909287600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20etCD32K1lj0IXgymSTbZnKSWFj20BFGoXsJmNlGhtrWNHv3tzibbVkF6EXII2SQMO5udN7Ob9wDOUFBYRJVYiS-U5fHQt0IeOBaFXm5nBAAaRmwi6PVEvx9GpuA2NdsqZ3NiMVGrEeoa-aVD-TZhA-6Iq_G7pVWj9OqqkdBYhTXNkqClGyL-NK-xaM5L4dol2ZBL2f3lQltm2nAKWevgV0D6e1ouYk1n-79W7sCWQZmsWQ6LXVhJh3uw-YN7cB-eWrONQ6yp5Lg4MfTljIAsW2h6sLJqmOZslLFS55MVOw3YXVrwrmJRYmTNwTOZkr-8HcBDp33furGM0IKFrt_IrcRTia8CW3oC9aoMJk4oXSEy5aUYYiIlSoWB4go9Lm3uyAAJqNjKaySEyJR7CJXhaJgeAZOKgp3IBOEc39NHIlEhzzLupBhgWAVn1tsxGhZyLYYxiCkb0S6K_3BRFS7mD41LEo7lt59rN8a6C-jdKM2fBmShJruKmxo1ebYbkDW1mRtj8-1O44UPj5c3n8CGFp8vCzI1qOSTj_QU1vEzf51O6rB23e5Fd3VY7X6168XApGvRbTd6_AZo9PAW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iZdLGYWwwRFm3-bCJCxGJYyfOAaGKgVoVqgoxCbhkznPCJnVtaQOIf4q_kef8oExC3DhMyiFSEst2vvh9fna-D-AbKgqLaBInCZRxhIwCJ5Ihdyj0SjcjAuBVZhNhv69OT6PBAtzV_8LYbZX1mFgM1GaMNke-zWm-TdxAcrU7uXSsa5RdXa0tNEpY9NLbG5qyzXa6P-j9fuf8YP9kr-NUrgIO-oGXO4kwSWBCVwuFdgkCEx5pX6nMiBQjTLRGbTA00qCQ2pVch0hR2TXCS4h-GJ_KfQWLwoK9AYuD7tHg7CGrY1U2le-W8ka-H7nbczebmccLI-3wnxD4dCAootvB8v_WL-_hXcWjWbsE_gdYSEcrsPRIXXEVzvfqrVGsbfSkOKkE2hlRdTZ3LWFlXjTN2ThjpZMpK_ZSsOO0UJbFIonK2sMLanr---9H-PkijVuDxmg8SteBaUPhXGWKmFwg7JFoNCizTPIUQ4yawOu3G2Ols27tPoYxzbcsJOInINGErYeHJqXMyPO3b1rYxLYLqGzU1b8UVEMr5xW3LS8Urh9SbVo1bOJqdJrFc8xsPH_5K7zpnBwdxofdfu8TvOVE8Mr0Uwsa-fQq_Qyv8Tr_M5t-qT4EBr9eGmP3kBpM4g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pa9swFH6kaSnrYW3XjmXLOh06dpmJI1uWfBgjpA0LKSGUFUounvxkt4MsyRJ3Y_9a_7o--UezQsmth4IPBtvCkp70Pj09fR_AMSpyi2hiJw6UcXwRBk4oJHfI9Qo3JQDQLsUm5HCoLi_DUQ1uq7MwNq2ymhPzidrM0MbIW5zW24QNBFettEyLGJ30vs5_O1ZByu60VnIahYkMkn9_afm2_NI_ob7-yHnv9Hv3m1MqDDjoBe3MiX0TB0a62ldotyMw5qH2lEqNn2CIsdaoDUojDPpCu4JrieShXeO3Y4IixqNyN2BT0hrTphOOxPg-vmP5NpXnFkRHnhe6rZWuzbLNc0lt-cAZPu4Scj_X233OLbQHL0t0zTrFcNiHWjJ9BTv_cS4ewLhbJUyxjtHz_KakbWcE4NlKy4QV0dIkY7OUFfqmLM-wYOdJzjeLeWiVdSZXVPXs-tchXDxJ5V5DfTqbJm-AaUNOXqWK8F3g2yvWaFCkqeAJSgwbwKuejrBkX7ciIJOIVmHWPKJHzKMBn-8_mhfkI-tf_2RNKLJNQGWjLk9Y0B9akq-oY9Gi73qS_qZZmVBUzlnLaGU_b9c__gDbZFjRWX84eAcvOKG-IibVhHq2uEnewxb-yX4uF0f5iGDw46kN7A6tV1RF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+Adaptive+Systems+for+Industrial+Internet+of+Things+Using+Reinforcement+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Rajawat%2C+Anand+Singh&rft.au=Goyal%2C+S.+B&rft.au=Chauhan%2C+Chetan&rft.au=Bedi%2C+Pradeep&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Felectronics12010217&rft.externalDocID=A743140379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon