Cognitive Adaptive Systems for Industrial Internet of Things Using Reinforcement Algorithm
Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industri...
Gespeichert in:
| Veröffentlicht in: | Electronics (Basel) Jg. 12; H. 1; S. 217 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.01.2023
|
| Schlagworte: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industrial production systems to be flexible and resilient to respond to changes in real time. This study examines the use of RL in a wide range of adaptive cognitive systems with IIoT-edges in manufacturing processes. We propose a cognitive adaptive system using IIoT with RL (CAS-IIoT-RL) and our experimental analysis showed that the proposed model showed improvements with adaptive and dynamic decision controls in challenging industrial environments. |
|---|---|
| AbstractList | Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that can handle a broader range of challenges and improve their productivity. Reinforcement Learning (RL) was shown to be able to support industrial production systems to be flexible and resilient to respond to changes in real time. This study examines the use of RL in a wide range of adaptive cognitive systems with IIoT-edges in manufacturing processes. We propose a cognitive adaptive system using IIoT with RL (CAS-IIoT-RL) and our experimental analysis showed that the proposed model showed improvements with adaptive and dynamic decision controls in challenging industrial environments. |
| Audience | Academic |
| Author | Chauhan, Chetan Rajawat, Anand Singh Bedi, Pradeep Prasad, Mukesh Jan, Tony Goyal, S. B. |
| Author_xml | – sequence: 1 givenname: Anand Singh orcidid: 0000-0001-5940-5799 surname: Rajawat fullname: Rajawat, Anand Singh – sequence: 2 givenname: S. B. orcidid: 0000-0002-8411-7630 surname: Goyal fullname: Goyal, S. B. – sequence: 3 givenname: Chetan surname: Chauhan fullname: Chauhan, Chetan – sequence: 4 givenname: Pradeep surname: Bedi fullname: Bedi, Pradeep – sequence: 5 givenname: Mukesh orcidid: 0000-0002-7745-9667 surname: Prasad fullname: Prasad, Mukesh – sequence: 6 givenname: Tony orcidid: 0000-0002-3114-8978 surname: Jan fullname: Jan, Tony |
| BookMark | eNp9kEtLAzEUhYMoWGt_gZuA69Y8ZiaT5VB8FAqCths3QybJTFNmkpqkQv-9qXUhIt7NPVzOdxLOFTi3zmoAbjCaUcrRne61jN5ZIwMmCCOC2RkYEcT4lBNOzn_oSzAJYYvScExLikbgbe46a6L50LBSYvclXg8h6iHA1nm4sGofojeiTzJqb3WEroWrjbFdgOuQFnzRxiav1IO2EVZ957yJm-EaXLSiD3ryvcdg_XC_mj9Nl8-Pi3m1nEpa4DhtMtUUiiGRlbJgvJQN4YKWZasyLblshJBCSaZyJbNcoJwIJguaI5XhhlCi6BjcnnJ33r3vdYj11u29TU_WhBUYY5KTMrlmJ1cnel0fPxx9Sk7ZejAyNdqadK9YRnGGKOMJ4CdAeheC120tTRTROJtA09cY1cf66z_qTyz9xe68GYQ__Et9AmnwkFI |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_01_039 crossref_primary_10_3390_electronics13101832 crossref_primary_10_3390_app15105573 crossref_primary_10_1007_s43069_025_00492_3 crossref_primary_10_1109_ACCESS_2024_3499741 crossref_primary_10_3390_electronics13020332 crossref_primary_10_32604_cmc_2024_052509 |
| Cites_doi | 10.1002/ett.4650 10.1109/MNET.001.1800505 10.1155/2021/7179374 10.1145/3005745.3005750 10.1109/ICHMS49158.2020.9209435 10.1007/978-981-16-2164-2_26 10.1007/s11633-020-1229-0 10.1016/j.cogsys.2018.11.005 10.1109/COMST.2021.3073036 10.1109/ICHMS53169.2021.9582624 10.1007/s00502-018-0614-7 10.1201/9781003337874 10.1016/j.compeleceng.2022.108164 10.1109/EAIS48028.2020.9122759 10.1007/s12083-021-01169-4 10.3390/a14080240 10.1098/rsfs.2018.0041 10.1155/2021/6876688 10.36227/techrxiv.19313318 10.3390/jsan9020021 10.1109/SEAMS51251.2021.00035 10.1007/s11432-020-2955-6 10.3390/s21227518 10.1109/IECON.2017.8216594 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics12010217 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Collection (ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A743140379 10_3390_electronics12010217 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c361t-b4db6d70a48c6798cb29a388fd4ec9cbaacadc7d5dc45a052a7c6350d41b232d3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000909287600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Tue Sep 23 21:48:42 EDT 2025 Tue Nov 04 18:37:38 EST 2025 Sat Nov 29 07:14:09 EST 2025 Tue Nov 18 21:27:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-b4db6d70a48c6798cb29a388fd4ec9cbaacadc7d5dc45a052a7c6350d41b232d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5940-5799 0000-0002-7745-9667 0000-0002-3114-8978 0000-0002-8411-7630 |
| OpenAccessLink | https://www.proquest.com/docview/2761112528?pq-origsite=%requestingapplication% |
| PQID | 2761112528 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2761112528 gale_infotracacademiconefile_A743140379 crossref_citationtrail_10_3390_electronics12010217 crossref_primary_10_3390_electronics12010217 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kegyes (ref_14) 2021; 2021 Shilpa (ref_28) 2022; 102 ref_12 ref_11 Chen (ref_5) 2019; 33 You (ref_10) 2021; 64 ref_19 ref_18 ref_17 Marx (ref_2) 2019; 56 ref_15 Alhasnawi (ref_4) 2020; 63 Goyal (ref_27) 2021; 14 Kolchinsky (ref_13) 2018; 8 ref_24 ref_23 ref_22 ref_21 ref_20 ref_1 Siafara (ref_8) 2018; 135 Chen (ref_16) 2021; 23 ref_29 ref_26 Li (ref_9) 2020; 17 Rajawat (ref_25) 2021; 2021 ref_7 Coralie (ref_3) 2019; 190 ref_6 |
| References_xml | – ident: ref_7 doi: 10.1002/ett.4650 – volume: 33 start-page: 61 year: 2019 ident: ref_5 article-title: Improving cognitive ability of edge intelligent IIoT through machine learning publication-title: IEEE Netw. doi: 10.1109/MNET.001.1800505 – volume: 2021 start-page: 7179374 year: 2021 ident: ref_14 article-title: The Applicability of Reinforcement Learning Methods in the Development of Industry 4.0 Applications publication-title: Complexity doi: 10.1155/2021/7179374 – ident: ref_21 doi: 10.1145/3005745.3005750 – ident: ref_24 – ident: ref_19 doi: 10.1109/ICHMS49158.2020.9209435 – ident: ref_26 doi: 10.1007/978-981-16-2164-2_26 – volume: 17 start-page: 417 year: 2020 ident: ref_9 article-title: Controller Optimization for Multirate Systems Based on Reinforcement Learning publication-title: Int. J. Autom. Comput doi: 10.1007/s11633-020-1229-0 – volume: 56 start-page: 56 year: 2019 ident: ref_2 article-title: Extractive Document Summarization Using an Adaptive, Knowledge Based Cognitive Model publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.11.005 – volume: 23 start-page: 1659 year: 2021 ident: ref_16 article-title: Deep reinforcement learning for Internet of Things: A comprehensive survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3073036 – ident: ref_20 doi: 10.1109/ICHMS53169.2021.9582624 – volume: 135 start-page: 270 year: 2018 ident: ref_8 article-title: SAMBA -an architecture for adaptive cognitive control of distributed Cyber-Physical Production Systems based on its self-awareness publication-title: Elektrotech. Inftech doi: 10.1007/s00502-018-0614-7 – ident: ref_23 doi: 10.1201/9781003337874 – volume: 102 start-page: 108164 year: 2022 ident: ref_28 article-title: Deep learning based optimised data transmission over 5G networks with Lagrangian encoder publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108164 – ident: ref_6 – ident: ref_12 doi: 10.1109/EAIS48028.2020.9122759 – volume: 14 start-page: 3235 year: 2021 ident: ref_27 article-title: Deep learning application for sensing available spectrum for cognitive radio: An ECRNN approach publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-021-01169-4 – ident: ref_1 doi: 10.3390/a14080240 – ident: ref_29 – volume: 8 start-page: 20180041 year: 2018 ident: ref_13 article-title: Semantic information, autonomous agency and non-equilibrium statistical physics publication-title: Interface Focus doi: 10.1098/rsfs.2018.0041 – volume: 2021 start-page: 6876688 year: 2021 ident: ref_25 article-title: Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning publication-title: Math. Probl. Eng. doi: 10.1155/2021/6876688 – ident: ref_17 doi: 10.36227/techrxiv.19313318 – ident: ref_15 doi: 10.3390/jsan9020021 – volume: 190 start-page: 105290 year: 2019 ident: ref_3 article-title: Adaptive Early Classification of Temporal Sequences Using Deep Reinforcement Learning publication-title: Knowl.-Based Syst. – ident: ref_11 doi: 10.1109/SEAMS51251.2021.00035 – volume: 63 start-page: 1006 year: 2020 ident: ref_4 article-title: Internet of Things (IoT) for smart grids: A comprehensive review publication-title: J. Xi’an Univ. Archit – volume: 64 start-page: 110301 year: 2021 ident: ref_10 article-title: Towards 6G wireless communication networks: Vision, enabling technologies and new paradigm shifts publication-title: Sci. China Inf. Sci doi: 10.1007/s11432-020-2955-6 – ident: ref_18 doi: 10.3390/s21227518 – ident: ref_22 doi: 10.1109/IECON.2017.8216594 |
| SSID | ssj0000913830 |
| Score | 2.3423784 |
| Snippet | Agile product development cycles and re-configurable Industrial Internet of Things (IIoT) allow more flexible and resilient industrial production systems that... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 217 |
| SubjectTerms | Adaptive systems Algorithms Automation Cognitive ability Computers Datasets Deep learning Factories Industrial applications Industrial Internet of Things Intelligence Machine learning Manufacturing Product development Reinforcement learning (Machine learning) Semantics |
| Title | Cognitive Adaptive Systems for Industrial Internet of Things Using Reinforcement Algorithm |
| URI | https://www.proquest.com/docview/2761112528 |
| Volume | 12 |
| WOSCitedRecordID | wos000909287600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20etCD32K1lj0IXgymSTbZnKSWFj20BFGoXsJmNlGhtrWNHv3tzibbVkF6EXII2SQMO5udN7Ob9wDOUFBYRJVYiS-U5fHQt0IeOBaFXm5nBAAaRmwi6PVEvx9GpuA2NdsqZ3NiMVGrEeoa-aVD-TZhA-6Iq_G7pVWj9OqqkdBYhTXNkqClGyL-NK-xaM5L4dol2ZBL2f3lQltm2nAKWevgV0D6e1ouYk1n-79W7sCWQZmsWQ6LXVhJh3uw-YN7cB-eWrONQ6yp5Lg4MfTljIAsW2h6sLJqmOZslLFS55MVOw3YXVrwrmJRYmTNwTOZkr-8HcBDp33furGM0IKFrt_IrcRTia8CW3oC9aoMJk4oXSEy5aUYYiIlSoWB4go9Lm3uyAAJqNjKaySEyJR7CJXhaJgeAZOKgp3IBOEc39NHIlEhzzLupBhgWAVn1tsxGhZyLYYxiCkb0S6K_3BRFS7mD41LEo7lt59rN8a6C-jdKM2fBmShJruKmxo1ebYbkDW1mRtj8-1O44UPj5c3n8CGFp8vCzI1qOSTj_QU1vEzf51O6rB23e5Fd3VY7X6168XApGvRbTd6_AZo9PAW |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH5iZdLGYWwwRFm3-bCJCxGJYyfOAaGKgVoVqgoxCbhkznPCJnVtaQOIf4q_kef8oExC3DhMyiFSEst2vvh9fna-D-AbKgqLaBInCZRxhIwCJ5Ihdyj0SjcjAuBVZhNhv69OT6PBAtzV_8LYbZX1mFgM1GaMNke-zWm-TdxAcrU7uXSsa5RdXa0tNEpY9NLbG5qyzXa6P-j9fuf8YP9kr-NUrgIO-oGXO4kwSWBCVwuFdgkCEx5pX6nMiBQjTLRGbTA00qCQ2pVch0hR2TXCS4h-GJ_KfQWLwoK9AYuD7tHg7CGrY1U2le-W8ka-H7nbczebmccLI-3wnxD4dCAootvB8v_WL-_hXcWjWbsE_gdYSEcrsPRIXXEVzvfqrVGsbfSkOKkE2hlRdTZ3LWFlXjTN2ThjpZMpK_ZSsOO0UJbFIonK2sMLanr---9H-PkijVuDxmg8SteBaUPhXGWKmFwg7JFoNCizTPIUQ4yawOu3G2Ols27tPoYxzbcsJOInINGErYeHJqXMyPO3b1rYxLYLqGzU1b8UVEMr5xW3LS8Urh9SbVo1bOJqdJrFc8xsPH_5K7zpnBwdxofdfu8TvOVE8Mr0Uwsa-fQq_Qyv8Tr_M5t-qT4EBr9eGmP3kBpM4g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pa9swFH6kaSnrYW3XjmXLOh06dpmJI1uWfBgjpA0LKSGUFUounvxkt4MsyRJ3Y_9a_7o--UezQsmth4IPBtvCkp70Pj09fR_AMSpyi2hiJw6UcXwRBk4oJHfI9Qo3JQDQLsUm5HCoLi_DUQ1uq7MwNq2ymhPzidrM0MbIW5zW24QNBFettEyLGJ30vs5_O1ZByu60VnIahYkMkn9_afm2_NI_ob7-yHnv9Hv3m1MqDDjoBe3MiX0TB0a62ldotyMw5qH2lEqNn2CIsdaoDUojDPpCu4JrieShXeO3Y4IixqNyN2BT0hrTphOOxPg-vmP5NpXnFkRHnhe6rZWuzbLNc0lt-cAZPu4Scj_X233OLbQHL0t0zTrFcNiHWjJ9BTv_cS4ewLhbJUyxjtHz_KakbWcE4NlKy4QV0dIkY7OUFfqmLM-wYOdJzjeLeWiVdSZXVPXs-tchXDxJ5V5DfTqbJm-AaUNOXqWK8F3g2yvWaFCkqeAJSgwbwKuejrBkX7ciIJOIVmHWPKJHzKMBn-8_mhfkI-tf_2RNKLJNQGWjLk9Y0B9akq-oY9Gi73qS_qZZmVBUzlnLaGU_b9c__gDbZFjRWX84eAcvOKG-IibVhHq2uEnewxb-yX4uF0f5iGDw46kN7A6tV1RF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+Adaptive+Systems+for+Industrial+Internet+of+Things+Using+Reinforcement+Algorithm&rft.jtitle=Electronics+%28Basel%29&rft.au=Rajawat%2C+Anand+Singh&rft.au=Goyal%2C+S.+B&rft.au=Chauhan%2C+Chetan&rft.au=Bedi%2C+Pradeep&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Felectronics12010217&rft.externalDocID=A743140379 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |