Consistency-driven data quality management of networked sensor systems

With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management fr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of parallel and distributed computing Ročník 68; číslo 9; s. 1207 - 1221
Hlavní autoři: Sha, Kewei, Shi, Weisong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.09.2008
Elsevier
Témata:
ISSN:0743-7315, 1096-0848
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management framework called Orchis that integrates the quality of data into an energy efficient sensor system design. Orchis consists of four components, data consistency models, adaptive data sampling and process protocols, consistency-driven cross-layer protocols and flexible APIs to manage the data quality, to support the goals of high data quality and energy efficiency. We first formally define a consistency model, which not only includes temporal consistency and numerical consistency, but also considers the application-specific requirements of data and data dynamics in the sensing field. Next, we propose an adaptive lazy energy efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype implementation using MICA2 motes. The results from both simulation and prototype show that our protocol reduces the number of delivered messages, improves the quality of collected data, and in turn extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set between data consistency requirements and energy saving based on the specific requirements of different applications.
AbstractList With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management framework called Orchis that integrates the quality of data into an energy efficient sensor system design. Orchis consists of four components, data consistency models, adaptive data sampling and process protocols, consistency-driven cross-layer protocols and flexible APIs to manage the data quality, to support the goals of high data quality and energy efficiency. We first formally define a consistency model, which not only includes temporal consistency and numerical consistency, but also considers the application-specific requirements of data and data dynamics in the sensing field. Next, we propose an adaptive lazy energy efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype implementation using MICA2 motes. The results from both simulation and prototype show that our protocol reduces the number of delivered messages, improves the quality of collected data, and in turn extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set between data consistency requirements and energy saving based on the specific requirements of different applications.
With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management framework called Orchis that integrates the quality of data into an energy efficient sensor system design. Orchis consists of four components, data consistency models, adaptive data sampling and process protocols, consistency-driven cross-layer protocols and flexible APIs to manage the data quality, to support the goals of high data quality and energy efficiency. We first formally define a consistency model, which not only includes temporal consistency and numerical consistency, but also considers the application-specific requirements of data and data dynamics in the sensing field. Next, we propose an adaptive lazy energy efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype implementation using MICA2 motes. The results from both simulation and prototype show that our protocol reduces the number of delivered messages, improves the quality of collected data, and in turn extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set between data consistency requirements and energy saving based on the specific requirements of different applications.
Author Sha, Kewei
Shi, Weisong
Author_xml – sequence: 1
  givenname: Kewei
  surname: Sha
  fullname: Sha, Kewei
  email: kewei@wayne.edu
– sequence: 2
  givenname: Weisong
  surname: Shi
  fullname: Shi, Weisong
  email: weisong@wayne.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20615325$$DView record in Pascal Francis
BookMark eNp9kEFv1DAQRi1UJLaFP8ApF7glHSexk0hc0IpCpUpc4Gx5xxPkJbG3Hm_R_nu82nLh0MvM5b3v8K7FVYiBhHgvoZEg9e2-2R8cNi3A2IBuAPpXYiNh0jWM_XglNjD0XT10Ur0R18x7ACnVMG7E3TYG9pwp4Kl2yT9RqJzNtno82sXnU7XaYH_RSiFXca4C5T8x_SZXMQWOqeJTcVd-K17PdmF69_xvxM-7Lz-23-qH71_vt58fauy0zPWuVQpJk9Yo7USzcgoRHMp2mnfDOPZdP0icJmzduOsclKO07fW0Ay2HSXc34uNl95Di45E4m9Uz0rLYQPHIpuuV6qdBFvDDM2gZ7TInG9CzOSS_2nQybdlTXasKN144TJE50WzQZ5t9DDlZvxgJ5hzY7M05sDkHNqBNCVzU9j_13_qL0qeLRKXSk6dkGH2JT84nwmxc9C_pfwF_DZcV
CitedBy_id crossref_primary_10_1145_2740965
crossref_primary_10_1109_TVT_2010_2040400
crossref_primary_10_1142_S0218126625501415
crossref_primary_10_1016_j_comnet_2019_01_010
crossref_primary_10_1016_j_comcom_2019_11_036
crossref_primary_10_1007_s41019_015_0004_7
crossref_primary_10_1109_TSMC_2014_2360506
crossref_primary_10_1109_MSMC_2018_2806565
crossref_primary_10_1145_2378016_2378020
crossref_primary_10_1155_2013_786594
crossref_primary_10_1145_3122863
Cites_doi 10.1007/s00778-004-0138-0
10.1145/378993.379006
10.1145/510726.510736
10.1145/958503.958506
10.1145/1159913.1159922
10.1109/INFOCOM.2006.149
10.1166/sl.2005.017
10.1109/MPRV.2002.993145
10.1145/1031495.1031499
10.1145/881978.881998
10.1145/990680.990704
10.1145/1031495.1031518
10.1145/1031495.1031498
10.1145/1052199.1052202
10.1145/1031495.1031509
10.1145/1182807.1182823
10.1504/IJSNET.2006.012031
10.1145/1182807.1182833
10.1145/1061318.1061322
10.1145/1031495.1031497
10.1145/313451.313556
10.1109/MC.2007.250
10.1016/B978-012722442-8/50014-8
10.1109/MCOM.2002.1024422
10.1145/332833.332838
10.1145/1031495.1031508
ContentType Journal Article
Copyright 2008 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jpdc.2008.06.004
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1096-0848
EndPage 1221
ExternalDocumentID 20615325
10_1016_j_jpdc_2008_06_004
S0743731508001044
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-b255ce6e66c1a9ef5d5cc0dc129fb78843471c99c2d8b3d08b356a469b0617963
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258732400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sat Sep 27 18:21:50 EDT 2025
Mon Jul 21 09:14:17 EDT 2025
Tue Nov 18 21:48:08 EST 2025
Sat Nov 29 07:19:35 EST 2025
Fri Feb 23 02:27:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Wireless sensor networks
Data quality
Energy efficiency
Consistency models
Adaptation
Streaming
Measurement sensor
Interconnected power system
Data quality;Consistency models;Wireless sensor networks;Energy efficiency;Adaptation
Unfolding
Application program interfaces
Network management
Distributed system
Modeling
Adaptive method
Energy savings
Data integrity
Storage management
Sampling rate
Database
Wireless network
Data models
Sampling
Sensor array
Quality management
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c361t-b255ce6e66c1a9ef5d5cc0dc129fb78843471c99c2d8b3d08b356a469b0617963
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34554971
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_34554971
pascalfrancis_primary_20615325
crossref_citationtrail_10_1016_j_jpdc_2008_06_004
crossref_primary_10_1016_j_jpdc_2008_06_004
elsevier_sciencedirect_doi_10_1016_j_jpdc_2008_06_004
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References C. Lu, et al. A spatiotemporal query service for mobile users in sensor networks, in: Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05), 2005
K. Sha, J. Du, W. Shi, Wear: A balanced, fault-tolerant, energy-efficient routing protocol for wireless sensor networks, International Journal of Sensor Networks 1 (2)
Akyildiz, Su, Sankarasubramaniam, Cayirci (b1) 2002; 40
The nyquist-shannon sampling theorem. URL
D. Estrin, et al. Next century challenges: Scalable coordination in sensor networks, in: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’99), 1999
P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable simulation of entire tinyos applications, in: Proc. of ACM SenSys 2003, 2003
Peterson, Davie (b20) 2003
Ramakrishnan (b23) 1998
J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System, architecture directions for networked sensors, in: Proceedings the 9th ASPLOS’00, 2000, pp. 93–104
Pottie, Kaiser (b22) 2000; 43
Tanenbaum, van Steen (b37) 2002
V. Shnayder, et al. Simulating the power consumption of large-scale sensor network applications, in: Proc. of ACM SenSys 2004, 2004
C. Sadler, P. Zhang, M. Martonosi, S. Lyon, Hardware design experiences in zebranet, in: Proc. of ACM SenSys 2004, 2004
K. Seada, M. Zuniga, A. Helmy, B. Krishnamachari, Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004
Crossbow technology inc. URL
M. Li, D. Ganesan, P. Shenoy, PRESTO: Feedback-driven data management in sensor networks, in: Proc. of the NSDI’06, 2006
M. Batalin, et al. Call and responses: Experiments in sampling the environment, in: Proc. of ACM SenSys 2004, 2004
J. Polastre, J. Hill, D. Culler, Veratile low power media access for wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004
Sha, Shi (b30) 2005; 3
A. Jain, E. Chang, Adaptive sampling for sensor networks, in: Proc. of the 1st International Workshop on Data Management for Sensor Networks: in Conjunction with VLDB 2004, 2004
X. Tang, J. Xu, Extending network lifetime for precision-constrained data aggregation in wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’06), 2006
N. Xu, et al. A wireless sensor network for structural monitoring, in: Proc. of ACM SenSys 2004, 2004
K. Sha, W. Shi, On the effects of consistency in data operations in wireless sensor networks, in: Proceedings of IEEE 12th International Conference on Parallel and Distributed Systems, 2006
A. Marbini, L. Sacks, Adaptive sampling mechanisms in sensor networks, in: London Communications Symposium, 2003
Min, Chandrakasan (b18) 2003; 7
N. Shrivastava, et al. Target tracking with binary proximity sensors: Fundamental limits, minimal descriptions, and algorithms, in: Proc. of ACM SenSys 2006, 2006
G. Mainland, D. Parkes, M. Welsh, Decentralized, adaptive resource allocation for sensor networks, in: Proc. of the NSDI’05, 2005
K. Sha, W. Shi, Modeling data consistency in wireless sensor networks, Tech. Rep. MIST-TR-2006-013, Wayne State University (Oct. 2006)
Hamdaoui, Ramanathan (b8) 2006
Q. Younis, S. Fahmy, Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’04), 2004
G. Simon, A. Ledeczi, M. Maroti, Sensor network-based countersniper system, in: Proc. of ACM SenSys 2004, 2004
Estrin, Culler, Pister, Sukhatme (b6) 2002; 1
W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protocol for wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), New York, NY, 2002
S. Shah, S. Dharmarajan, K. Ramamritham, An efficient and resilient approach to filtering and disseminating streaming data, in: Proc. of 29th International Conference on Very Large Data Bases, 2003
O. Gnawali, et al. The tenet architecture for tiered sensor networks, in: Proc. of ACM SenSys 2006, 2006
Sharaf, Beaver, Labrinidis, Chrysanthis (b29) 2004; 13
A. Cerpa, D. Estrin, ASCENT: Adaptive self-configuring sensor network topologies, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), 2002
S. Madden, et al. Tinydb: An acqusitional query processing system for sensor networks, ACM Transactions on Database Systems 30 (1)
He, Blum, Stankovic, Abdelzaher (b9) 2002; 40
Szewczyk (b35) 2004; 47
Nath, Liu, Zhao (b19) 2007; 40
S. Rangwala, et al. Interference-aware fair rate control in wireless sensor networks, in: Proc. of ACM SIGCOMM’06, 2006
Min (10.1016/j.jpdc.2008.06.004_b18) 2003; 7
10.1016/j.jpdc.2008.06.004_b26
10.1016/j.jpdc.2008.06.004_b27
Akyildiz (10.1016/j.jpdc.2008.06.004_b1) 2002; 40
10.1016/j.jpdc.2008.06.004_b24
10.1016/j.jpdc.2008.06.004_b25
10.1016/j.jpdc.2008.06.004_b28
Szewczyk (10.1016/j.jpdc.2008.06.004_b35) 2004; 47
Peterson (10.1016/j.jpdc.2008.06.004_b20) 2003
He (10.1016/j.jpdc.2008.06.004_b9) 2002; 40
10.1016/j.jpdc.2008.06.004_b40
Nath (10.1016/j.jpdc.2008.06.004_b19) 2007; 40
10.1016/j.jpdc.2008.06.004_b41
Sha (10.1016/j.jpdc.2008.06.004_b30) 2005; 3
10.1016/j.jpdc.2008.06.004_b42
10.1016/j.jpdc.2008.06.004_b21
10.1016/j.jpdc.2008.06.004_b15
10.1016/j.jpdc.2008.06.004_b16
10.1016/j.jpdc.2008.06.004_b38
10.1016/j.jpdc.2008.06.004_b13
Hamdaoui (10.1016/j.jpdc.2008.06.004_b8) 2006
10.1016/j.jpdc.2008.06.004_b14
10.1016/j.jpdc.2008.06.004_b36
10.1016/j.jpdc.2008.06.004_b4
Ramakrishnan (10.1016/j.jpdc.2008.06.004_b23) 1998
10.1016/j.jpdc.2008.06.004_b5
10.1016/j.jpdc.2008.06.004_b2
10.1016/j.jpdc.2008.06.004_b17
10.1016/j.jpdc.2008.06.004_b39
10.1016/j.jpdc.2008.06.004_b3
10.1016/j.jpdc.2008.06.004_b7
Estrin (10.1016/j.jpdc.2008.06.004_b6) 2002; 1
Tanenbaum (10.1016/j.jpdc.2008.06.004_b37) 2002
Pottie (10.1016/j.jpdc.2008.06.004_b22) 2000; 43
Sharaf (10.1016/j.jpdc.2008.06.004_b29) 2004; 13
10.1016/j.jpdc.2008.06.004_b11
10.1016/j.jpdc.2008.06.004_b33
10.1016/j.jpdc.2008.06.004_b12
10.1016/j.jpdc.2008.06.004_b34
10.1016/j.jpdc.2008.06.004_b31
10.1016/j.jpdc.2008.06.004_b10
10.1016/j.jpdc.2008.06.004_b32
References_xml – reference: K. Seada, M. Zuniga, A. Helmy, B. Krishnamachari, Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004
– year: 2006
  ident: b8
  article-title: Energy-efficient and MAC-aware routing for data
  publication-title: Aggregation in Sensor Networks
– volume: 1
  start-page: 59
  year: 2002
  end-page: 69
  ident: b6
  article-title: Connecting the physical world with pervasive networks
  publication-title: IEEE Pervasive Computing
– volume: 40
  start-page: 106
  year: 2007
  end-page: 109
  ident: b19
  article-title: Sensormap for wide-area sensor webs
  publication-title: Computer
– reference: M. Li, D. Ganesan, P. Shenoy, PRESTO: Feedback-driven data management in sensor networks, in: Proc. of the NSDI’06, 2006
– year: 2002
  ident: b37
  article-title: Distributed Systems: Principles and Paradigms
– year: 1998
  ident: b23
  article-title: Database Management Systems
– reference: K. Sha, W. Shi, On the effects of consistency in data operations in wireless sensor networks, in: Proceedings of IEEE 12th International Conference on Parallel and Distributed Systems, 2006
– reference: K. Sha, J. Du, W. Shi, Wear: A balanced, fault-tolerant, energy-efficient routing protocol for wireless sensor networks, International Journal of Sensor Networks 1 (2)
– volume: 13
  start-page: 384
  year: 2004
  end-page: 403
  ident: b29
  article-title: Balancing energy efficiency and quality of aggregate data in sensor networks
  publication-title: The VLDB Journal
– reference: O. Gnawali, et al. The tenet architecture for tiered sensor networks, in: Proc. of ACM SenSys 2006, 2006
– volume: 40
  start-page: 102
  year: 2002
  end-page: 114
  ident: b1
  article-title: A survey on sensor networks
  publication-title: IEEE Communications Magazine
– year: 2003
  ident: b20
  article-title: Computer Networks: A Systems Approach
– reference: W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protocol for wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), New York, NY, 2002
– volume: 7
  start-page: 65
  year: 2003
  end-page: 67
  ident: b18
  article-title: Mobicom poster: Top five myths about the energy consumption of wireless communication
  publication-title: Mobile Computing and Communications Review
– volume: 47
  start-page: 34
  year: 2004
  end-page: 40
  ident: b35
  article-title: Habitat monitoring with sensor networks
  publication-title: Communications of the ACM
– reference: G. Mainland, D. Parkes, M. Welsh, Decentralized, adaptive resource allocation for sensor networks, in: Proc. of the NSDI’05, 2005
– reference: S. Madden, et al. Tinydb: An acqusitional query processing system for sensor networks, ACM Transactions on Database Systems 30 (1)
– reference: D. Estrin, et al. Next century challenges: Scalable coordination in sensor networks, in: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’99), 1999
– reference: The nyquist-shannon sampling theorem. URL
– reference: X. Tang, J. Xu, Extending network lifetime for precision-constrained data aggregation in wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’06), 2006
– reference: G. Simon, A. Ledeczi, M. Maroti, Sensor network-based countersniper system, in: Proc. of ACM SenSys 2004, 2004
– volume: 43
  start-page: 51
  year: 2000
  end-page: 58
  ident: b22
  article-title: Wireless integrated network sensors
  publication-title: Communications of the ACM
– reference: C. Sadler, P. Zhang, M. Martonosi, S. Lyon, Hardware design experiences in zebranet, in: Proc. of ACM SenSys 2004, 2004
– reference: K. Sha, W. Shi, Modeling data consistency in wireless sensor networks, Tech. Rep. MIST-TR-2006-013, Wayne State University (Oct. 2006)
– reference: A. Cerpa, D. Estrin, ASCENT: Adaptive self-configuring sensor network topologies, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), 2002
– reference: N. Shrivastava, et al. Target tracking with binary proximity sensors: Fundamental limits, minimal descriptions, and algorithms, in: Proc. of ACM SenSys 2006, 2006
– reference: A. Marbini, L. Sacks, Adaptive sampling mechanisms in sensor networks, in: London Communications Symposium, 2003
– reference: N. Xu, et al. A wireless sensor network for structural monitoring, in: Proc. of ACM SenSys 2004, 2004
– reference: J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System, architecture directions for networked sensors, in: Proceedings the 9th ASPLOS’00, 2000, pp. 93–104
– reference: S. Rangwala, et al. Interference-aware fair rate control in wireless sensor networks, in: Proc. of ACM SIGCOMM’06, 2006
– reference: P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable simulation of entire tinyos applications, in: Proc. of ACM SenSys 2003, 2003
– reference: V. Shnayder, et al. Simulating the power consumption of large-scale sensor network applications, in: Proc. of ACM SenSys 2004, 2004
– reference: M. Batalin, et al. Call and responses: Experiments in sampling the environment, in: Proc. of ACM SenSys 2004, 2004
– volume: 40
  start-page: 102
  year: 2002
  end-page: 114
  ident: b9
  article-title: Aida: Adaptive application independent data aggregation in wireless sensor networks
  publication-title: ACM Transactions on Embeded Computing Systems
– reference: Crossbow technology inc. URL
– reference: C. Lu, et al. A spatiotemporal query service for mobile users in sensor networks, in: Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05), 2005
– reference: S. Shah, S. Dharmarajan, K. Ramamritham, An efficient and resilient approach to filtering and disseminating streaming data, in: Proc. of 29th International Conference on Very Large Data Bases, 2003
– volume: 3
  start-page: 126
  year: 2005
  end-page: 135
  ident: b30
  article-title: Modeling the lifetime of wireless sensor networks
  publication-title: Sensor Letters
– reference: Q. Younis, S. Fahmy, Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’04), 2004
– reference: J. Polastre, J. Hill, D. Culler, Veratile low power media access for wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004
– reference: A. Jain, E. Chang, Adaptive sampling for sensor networks, in: Proc. of the 1st International Workshop on Data Management for Sensor Networks: in Conjunction with VLDB 2004, 2004
– volume: 13
  start-page: 384
  issue: 4
  year: 2004
  ident: 10.1016/j.jpdc.2008.06.004_b29
  article-title: Balancing energy efficiency and quality of aggregate data in sensor networks
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-004-0138-0
– ident: 10.1016/j.jpdc.2008.06.004_b10
  doi: 10.1145/378993.379006
– ident: 10.1016/j.jpdc.2008.06.004_b4
– ident: 10.1016/j.jpdc.2008.06.004_b3
  doi: 10.1145/510726.510736
– ident: 10.1016/j.jpdc.2008.06.004_b12
  doi: 10.1145/958503.958506
– ident: 10.1016/j.jpdc.2008.06.004_b24
  doi: 10.1145/1159913.1159922
– ident: 10.1016/j.jpdc.2008.06.004_b38
– ident: 10.1016/j.jpdc.2008.06.004_b41
  doi: 10.1109/INFOCOM.2006.149
– ident: 10.1016/j.jpdc.2008.06.004_b17
– ident: 10.1016/j.jpdc.2008.06.004_b13
– volume: 3
  start-page: 126
  issue: 2
  year: 2005
  ident: 10.1016/j.jpdc.2008.06.004_b30
  article-title: Modeling the lifetime of wireless sensor networks
  publication-title: Sensor Letters
  doi: 10.1166/sl.2005.017
– ident: 10.1016/j.jpdc.2008.06.004_b31
– volume: 1
  start-page: 59
  issue: 1
  year: 2002
  ident: 10.1016/j.jpdc.2008.06.004_b6
  article-title: Connecting the physical world with pervasive networks
  publication-title: IEEE Pervasive Computing
  doi: 10.1109/MPRV.2002.993145
– ident: 10.1016/j.jpdc.2008.06.004_b2
  doi: 10.1145/1031495.1031499
– volume: 7
  start-page: 65
  issue: 1
  year: 2003
  ident: 10.1016/j.jpdc.2008.06.004_b18
  article-title: Mobicom poster: Top five myths about the energy consumption of wireless communication
  publication-title: Mobile Computing and Communications Review
  doi: 10.1145/881978.881998
– volume: 47
  start-page: 34
  issue: 6
  year: 2004
  ident: 10.1016/j.jpdc.2008.06.004_b35
  article-title: Habitat monitoring with sensor networks
  publication-title: Communications of the ACM
  doi: 10.1145/990680.990704
– ident: 10.1016/j.jpdc.2008.06.004_b33
  doi: 10.1145/1031495.1031518
– ident: 10.1016/j.jpdc.2008.06.004_b42
  doi: 10.1145/1031495.1031498
– ident: 10.1016/j.jpdc.2008.06.004_b11
  doi: 10.1145/1052199.1052202
– ident: 10.1016/j.jpdc.2008.06.004_b26
  doi: 10.1145/1031495.1031509
– ident: 10.1016/j.jpdc.2008.06.004_b7
  doi: 10.1145/1182807.1182823
– volume: 40
  start-page: 102
  issue: 8
  year: 2002
  ident: 10.1016/j.jpdc.2008.06.004_b9
  article-title: Aida: Adaptive application independent data aggregation in wireless sensor networks
  publication-title: ACM Transactions on Embeded Computing Systems
– year: 2003
  ident: 10.1016/j.jpdc.2008.06.004_b20
– ident: 10.1016/j.jpdc.2008.06.004_b27
  doi: 10.1504/IJSNET.2006.012031
– ident: 10.1016/j.jpdc.2008.06.004_b34
  doi: 10.1145/1182807.1182833
– ident: 10.1016/j.jpdc.2008.06.004_b15
  doi: 10.1145/1061318.1061322
– ident: 10.1016/j.jpdc.2008.06.004_b36
  doi: 10.1145/1031495.1031497
– year: 2006
  ident: 10.1016/j.jpdc.2008.06.004_b8
  article-title: Energy-efficient and MAC-aware routing for data
– ident: 10.1016/j.jpdc.2008.06.004_b39
– ident: 10.1016/j.jpdc.2008.06.004_b5
  doi: 10.1145/313451.313556
– year: 2002
  ident: 10.1016/j.jpdc.2008.06.004_b37
– ident: 10.1016/j.jpdc.2008.06.004_b16
– volume: 40
  start-page: 106
  issue: 7
  year: 2007
  ident: 10.1016/j.jpdc.2008.06.004_b19
  article-title: Sensormap for wide-area sensor webs
  publication-title: Computer
  doi: 10.1109/MC.2007.250
– ident: 10.1016/j.jpdc.2008.06.004_b32
– ident: 10.1016/j.jpdc.2008.06.004_b14
– ident: 10.1016/j.jpdc.2008.06.004_b28
  doi: 10.1016/B978-012722442-8/50014-8
– volume: 40
  start-page: 102
  issue: 8
  year: 2002
  ident: 10.1016/j.jpdc.2008.06.004_b1
  article-title: A survey on sensor networks
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2002.1024422
– volume: 43
  start-page: 51
  issue: 5
  year: 2000
  ident: 10.1016/j.jpdc.2008.06.004_b22
  article-title: Wireless integrated network sensors
  publication-title: Communications of the ACM
  doi: 10.1145/332833.332838
– year: 1998
  ident: 10.1016/j.jpdc.2008.06.004_b23
– ident: 10.1016/j.jpdc.2008.06.004_b40
– ident: 10.1016/j.jpdc.2008.06.004_b21
  doi: 10.1145/1031495.1031508
– ident: 10.1016/j.jpdc.2008.06.004_b25
SSID ssj0011578
Score 1.9493601
Snippet With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1207
SubjectTerms Adaptation
Applied sciences
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Consistency models
Data quality
Energy efficiency
Exact sciences and technology
Information systems. Data bases
Memory organisation. Data processing
Software
Wireless sensor networks
Title Consistency-driven data quality management of networked sensor systems
URI https://dx.doi.org/10.1016/j.jpdc.2008.06.004
https://www.proquest.com/docview/34554971
Volume 68
WOSCitedRecordID wos000258732400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEJcUeUy_ADb1VQEzu-PE4oY0WoIG1A36LEsaVVVRo1Ldr-PcexnXarNuCBl6i1mqTK9-Wcz_a5IPReScW1KIuIJKaIKNMygm8iqiTjpqCak67H0o8vfDoVs5n85jOu266dAK9rcXEhm_8KNYwB2DZ19h_g7i8KA_AZQIcjwA7HvwK-a8HZWil8GVUra8xGNgzUp09e-njVEANQuzBwkJ0tTGiXobRze4NotZXCFwvt6gtUtuiu7Zelu9S4ZrMOftBa8OxnNhmdnmzXAbLJ6dfpJxiaXFlqEH0slV__8s56x0TZAqcAZ7prT5nY4Y3cMY5x4hrcekcbJy43es-Iu_WE-Yd5Uykf7Wp3jOjWZYVt-muerI8vTKxQI0l6Fx0kPJVigA6OJtnsc7-_FKfOR4f_79OpXOTf9fveJFkeNEULL5JxHVD2nHmnUM4eo4ceJXzkKPEE3dH1U_TITzOwN-ItDIVOHmHsGTreJw22pMGeNHhLGrw0uCcNdqTBnjTP0ffj7OzjSeQ7bESKsHgdlTChVJppxlRcSG3SKlVqXCkQgabkQlAC2kVJqZJKlKQawyFlBWWytMoXbPcLNKiXtX6JsOIGJhMxUVSOQYKnBTGCaiNZAgIIrMEQxeEh5sqXn7ddUBZ5iDOc5_bB-76oNtiSDtGoP6dxxVdu_XUasMm9fHSyMAdi3Xre4RUg-1sFFg3Ru4BsDsbX7qgVtV5u2pxQUOOSx6_-dInX6P72hXqDBuvVRr9F99Sv9Xm7OvTs_A3UwqZD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency-driven+data+quality+management+of+networked+sensor+systems&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=KEWEI+SHA&rft.au=WEISONG+SHI&rft.date=2008-09-01&rft.pub=Elsevier&rft.issn=0743-7315&rft.volume=68&rft.issue=9&rft.spage=1207&rft.epage=1221&rft_id=info:doi/10.1016%2Fj.jpdc.2008.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=20615325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon