Consistency-driven data quality management of networked sensor systems
With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management fr...
Uložené v:
| Vydané v: | Journal of parallel and distributed computing Ročník 68; číslo 9; s. 1207 - 1221 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier Inc
01.09.2008
Elsevier |
| Predmet: | |
| ISSN: | 0743-7315, 1096-0848 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide
a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management framework called
Orchis that integrates the quality of data into an energy efficient sensor system design. Orchis consists of four components,
data consistency models,
adaptive data sampling and process protocols,
consistency-driven cross-layer protocols and
flexible APIs to manage the data quality, to support the goals of high data quality and energy efficiency. We first formally define a consistency model, which not only includes
temporal consistency and
numerical consistency, but also considers
the application-specific requirements of data and
data dynamics in the sensing field. Next, we propose an adaptive lazy energy efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype implementation using MICA2 motes. The results from both simulation and prototype show that our protocol reduces the number of delivered messages, improves the quality of collected data, and in turn extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set between data consistency requirements and energy saving based on the specific requirements of different applications. |
|---|---|
| AbstractList | With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management framework called Orchis that integrates the quality of data into an energy efficient sensor system design. Orchis consists of four components, data consistency models, adaptive data sampling and process protocols, consistency-driven cross-layer protocols and flexible APIs to manage the data quality, to support the goals of high data quality and energy efficiency. We first formally define a consistency model, which not only includes temporal consistency and numerical consistency, but also considers the application-specific requirements of data and data dynamics in the sensing field. Next, we propose an adaptive lazy energy efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype implementation using MICA2 motes. The results from both simulation and prototype show that our protocol reduces the number of delivered messages, improves the quality of collected data, and in turn extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set between data consistency requirements and energy saving based on the specific requirements of different applications. With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor networks can provide a high quality stream of data over a long period. In this paper, we propose a consistency-driven data quality management framework called Orchis that integrates the quality of data into an energy efficient sensor system design. Orchis consists of four components, data consistency models, adaptive data sampling and process protocols, consistency-driven cross-layer protocols and flexible APIs to manage the data quality, to support the goals of high data quality and energy efficiency. We first formally define a consistency model, which not only includes temporal consistency and numerical consistency, but also considers the application-specific requirements of data and data dynamics in the sensing field. Next, we propose an adaptive lazy energy efficient data collection protocol, which adapts the data sampling rate to the data dynamics in the sensing field and keeps lazy when the data consistency is maintained. Finally, we conduct a comprehensive evaluation to the proposed protocol based on both a TOSSIM-based simulation and a real prototype implementation using MICA2 motes. The results from both simulation and prototype show that our protocol reduces the number of delivered messages, improves the quality of collected data, and in turn extends the lifetime of the whole network. Our analysis also implies that a tradeoff should be carefully set between data consistency requirements and energy saving based on the specific requirements of different applications. |
| Author | Sha, Kewei Shi, Weisong |
| Author_xml | – sequence: 1 givenname: Kewei surname: Sha fullname: Sha, Kewei email: kewei@wayne.edu – sequence: 2 givenname: Weisong surname: Shi fullname: Shi, Weisong email: weisong@wayne.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20615325$$DView record in Pascal Francis |
| BookMark | eNp9kEFv1DAQRi1UJLaFP8ApF7glHSexk0hc0IpCpUpc4Gx5xxPkJbG3Hm_R_nu82nLh0MvM5b3v8K7FVYiBhHgvoZEg9e2-2R8cNi3A2IBuAPpXYiNh0jWM_XglNjD0XT10Ur0R18x7ACnVMG7E3TYG9pwp4Kl2yT9RqJzNtno82sXnU7XaYH_RSiFXca4C5T8x_SZXMQWOqeJTcVd-K17PdmF69_xvxM-7Lz-23-qH71_vt58fauy0zPWuVQpJk9Yo7USzcgoRHMp2mnfDOPZdP0icJmzduOsclKO07fW0Ay2HSXc34uNl95Di45E4m9Uz0rLYQPHIpuuV6qdBFvDDM2gZ7TInG9CzOSS_2nQybdlTXasKN144TJE50WzQZ5t9DDlZvxgJ5hzY7M05sDkHNqBNCVzU9j_13_qL0qeLRKXSk6dkGH2JT84nwmxc9C_pfwF_DZcV |
| CitedBy_id | crossref_primary_10_1145_2740965 crossref_primary_10_1109_TVT_2010_2040400 crossref_primary_10_1142_S0218126625501415 crossref_primary_10_1016_j_comnet_2019_01_010 crossref_primary_10_1016_j_comcom_2019_11_036 crossref_primary_10_1007_s41019_015_0004_7 crossref_primary_10_1109_TSMC_2014_2360506 crossref_primary_10_1109_MSMC_2018_2806565 crossref_primary_10_1145_2378016_2378020 crossref_primary_10_1155_2013_786594 crossref_primary_10_1145_3122863 |
| Cites_doi | 10.1007/s00778-004-0138-0 10.1145/378993.379006 10.1145/510726.510736 10.1145/958503.958506 10.1145/1159913.1159922 10.1109/INFOCOM.2006.149 10.1166/sl.2005.017 10.1109/MPRV.2002.993145 10.1145/1031495.1031499 10.1145/881978.881998 10.1145/990680.990704 10.1145/1031495.1031518 10.1145/1031495.1031498 10.1145/1052199.1052202 10.1145/1031495.1031509 10.1145/1182807.1182823 10.1504/IJSNET.2006.012031 10.1145/1182807.1182833 10.1145/1061318.1061322 10.1145/1031495.1031497 10.1145/313451.313556 10.1109/MC.2007.250 10.1016/B978-012722442-8/50014-8 10.1109/MCOM.2002.1024422 10.1145/332833.332838 10.1145/1031495.1031508 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier Inc. 2009 INIST-CNRS |
| Copyright_xml | – notice: 2008 Elsevier Inc. – notice: 2009 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jpdc.2008.06.004 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1096-0848 |
| EndPage | 1221 |
| ExternalDocumentID | 20615325 10_1016_j_jpdc_2008_06_004 S0743731508001044 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-b255ce6e66c1a9ef5d5cc0dc129fb78843471c99c2d8b3d08b356a469b0617963 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258732400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0743-7315 |
| IngestDate | Sat Sep 27 18:21:50 EDT 2025 Mon Jul 21 09:14:17 EDT 2025 Tue Nov 18 21:48:08 EST 2025 Sat Nov 29 07:19:35 EST 2025 Fri Feb 23 02:27:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Wireless sensor networks Data quality Energy efficiency Consistency models Adaptation Streaming Measurement sensor Interconnected power system Data quality;Consistency models;Wireless sensor networks;Energy efficiency;Adaptation Unfolding Application program interfaces Network management Distributed system Modeling Adaptive method Energy savings Data integrity Storage management Sampling rate Database Wireless network Data models Sampling Sensor array Quality management |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c361t-b255ce6e66c1a9ef5d5cc0dc129fb78843471c99c2d8b3d08b356a469b0617963 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 34554971 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_34554971 pascalfrancis_primary_20615325 crossref_citationtrail_10_1016_j_jpdc_2008_06_004 crossref_primary_10_1016_j_jpdc_2008_06_004 elsevier_sciencedirect_doi_10_1016_j_jpdc_2008_06_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-09-01 |
| PublicationDateYYYYMMDD | 2008-09-01 |
| PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of parallel and distributed computing |
| PublicationYear | 2008 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | C. Lu, et al. A spatiotemporal query service for mobile users in sensor networks, in: Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05), 2005 K. Sha, J. Du, W. Shi, Wear: A balanced, fault-tolerant, energy-efficient routing protocol for wireless sensor networks, International Journal of Sensor Networks 1 (2) Akyildiz, Su, Sankarasubramaniam, Cayirci (b1) 2002; 40 The nyquist-shannon sampling theorem. URL D. Estrin, et al. Next century challenges: Scalable coordination in sensor networks, in: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’99), 1999 P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable simulation of entire tinyos applications, in: Proc. of ACM SenSys 2003, 2003 Peterson, Davie (b20) 2003 Ramakrishnan (b23) 1998 J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System, architecture directions for networked sensors, in: Proceedings the 9th ASPLOS’00, 2000, pp. 93–104 Pottie, Kaiser (b22) 2000; 43 Tanenbaum, van Steen (b37) 2002 V. Shnayder, et al. Simulating the power consumption of large-scale sensor network applications, in: Proc. of ACM SenSys 2004, 2004 C. Sadler, P. Zhang, M. Martonosi, S. Lyon, Hardware design experiences in zebranet, in: Proc. of ACM SenSys 2004, 2004 K. Seada, M. Zuniga, A. Helmy, B. Krishnamachari, Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004 Crossbow technology inc. URL M. Li, D. Ganesan, P. Shenoy, PRESTO: Feedback-driven data management in sensor networks, in: Proc. of the NSDI’06, 2006 M. Batalin, et al. Call and responses: Experiments in sampling the environment, in: Proc. of ACM SenSys 2004, 2004 J. Polastre, J. Hill, D. Culler, Veratile low power media access for wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004 Sha, Shi (b30) 2005; 3 A. Jain, E. Chang, Adaptive sampling for sensor networks, in: Proc. of the 1st International Workshop on Data Management for Sensor Networks: in Conjunction with VLDB 2004, 2004 X. Tang, J. Xu, Extending network lifetime for precision-constrained data aggregation in wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’06), 2006 N. Xu, et al. A wireless sensor network for structural monitoring, in: Proc. of ACM SenSys 2004, 2004 K. Sha, W. Shi, On the effects of consistency in data operations in wireless sensor networks, in: Proceedings of IEEE 12th International Conference on Parallel and Distributed Systems, 2006 A. Marbini, L. Sacks, Adaptive sampling mechanisms in sensor networks, in: London Communications Symposium, 2003 Min, Chandrakasan (b18) 2003; 7 N. Shrivastava, et al. Target tracking with binary proximity sensors: Fundamental limits, minimal descriptions, and algorithms, in: Proc. of ACM SenSys 2006, 2006 G. Mainland, D. Parkes, M. Welsh, Decentralized, adaptive resource allocation for sensor networks, in: Proc. of the NSDI’05, 2005 K. Sha, W. Shi, Modeling data consistency in wireless sensor networks, Tech. Rep. MIST-TR-2006-013, Wayne State University (Oct. 2006) Hamdaoui, Ramanathan (b8) 2006 Q. Younis, S. Fahmy, Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’04), 2004 G. Simon, A. Ledeczi, M. Maroti, Sensor network-based countersniper system, in: Proc. of ACM SenSys 2004, 2004 Estrin, Culler, Pister, Sukhatme (b6) 2002; 1 W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protocol for wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), New York, NY, 2002 S. Shah, S. Dharmarajan, K. Ramamritham, An efficient and resilient approach to filtering and disseminating streaming data, in: Proc. of 29th International Conference on Very Large Data Bases, 2003 O. Gnawali, et al. The tenet architecture for tiered sensor networks, in: Proc. of ACM SenSys 2006, 2006 Sharaf, Beaver, Labrinidis, Chrysanthis (b29) 2004; 13 A. Cerpa, D. Estrin, ASCENT: Adaptive self-configuring sensor network topologies, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), 2002 S. Madden, et al. Tinydb: An acqusitional query processing system for sensor networks, ACM Transactions on Database Systems 30 (1) He, Blum, Stankovic, Abdelzaher (b9) 2002; 40 Szewczyk (b35) 2004; 47 Nath, Liu, Zhao (b19) 2007; 40 S. Rangwala, et al. Interference-aware fair rate control in wireless sensor networks, in: Proc. of ACM SIGCOMM’06, 2006 Min (10.1016/j.jpdc.2008.06.004_b18) 2003; 7 10.1016/j.jpdc.2008.06.004_b26 10.1016/j.jpdc.2008.06.004_b27 Akyildiz (10.1016/j.jpdc.2008.06.004_b1) 2002; 40 10.1016/j.jpdc.2008.06.004_b24 10.1016/j.jpdc.2008.06.004_b25 10.1016/j.jpdc.2008.06.004_b28 Szewczyk (10.1016/j.jpdc.2008.06.004_b35) 2004; 47 Peterson (10.1016/j.jpdc.2008.06.004_b20) 2003 He (10.1016/j.jpdc.2008.06.004_b9) 2002; 40 10.1016/j.jpdc.2008.06.004_b40 Nath (10.1016/j.jpdc.2008.06.004_b19) 2007; 40 10.1016/j.jpdc.2008.06.004_b41 Sha (10.1016/j.jpdc.2008.06.004_b30) 2005; 3 10.1016/j.jpdc.2008.06.004_b42 10.1016/j.jpdc.2008.06.004_b21 10.1016/j.jpdc.2008.06.004_b15 10.1016/j.jpdc.2008.06.004_b16 10.1016/j.jpdc.2008.06.004_b38 10.1016/j.jpdc.2008.06.004_b13 Hamdaoui (10.1016/j.jpdc.2008.06.004_b8) 2006 10.1016/j.jpdc.2008.06.004_b14 10.1016/j.jpdc.2008.06.004_b36 10.1016/j.jpdc.2008.06.004_b4 Ramakrishnan (10.1016/j.jpdc.2008.06.004_b23) 1998 10.1016/j.jpdc.2008.06.004_b5 10.1016/j.jpdc.2008.06.004_b2 10.1016/j.jpdc.2008.06.004_b17 10.1016/j.jpdc.2008.06.004_b39 10.1016/j.jpdc.2008.06.004_b3 10.1016/j.jpdc.2008.06.004_b7 Estrin (10.1016/j.jpdc.2008.06.004_b6) 2002; 1 Tanenbaum (10.1016/j.jpdc.2008.06.004_b37) 2002 Pottie (10.1016/j.jpdc.2008.06.004_b22) 2000; 43 Sharaf (10.1016/j.jpdc.2008.06.004_b29) 2004; 13 10.1016/j.jpdc.2008.06.004_b11 10.1016/j.jpdc.2008.06.004_b33 10.1016/j.jpdc.2008.06.004_b12 10.1016/j.jpdc.2008.06.004_b34 10.1016/j.jpdc.2008.06.004_b31 10.1016/j.jpdc.2008.06.004_b10 10.1016/j.jpdc.2008.06.004_b32 |
| References_xml | – reference: K. Seada, M. Zuniga, A. Helmy, B. Krishnamachari, Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004 – year: 2006 ident: b8 article-title: Energy-efficient and MAC-aware routing for data publication-title: Aggregation in Sensor Networks – volume: 1 start-page: 59 year: 2002 end-page: 69 ident: b6 article-title: Connecting the physical world with pervasive networks publication-title: IEEE Pervasive Computing – volume: 40 start-page: 106 year: 2007 end-page: 109 ident: b19 article-title: Sensormap for wide-area sensor webs publication-title: Computer – reference: M. Li, D. Ganesan, P. Shenoy, PRESTO: Feedback-driven data management in sensor networks, in: Proc. of the NSDI’06, 2006 – year: 2002 ident: b37 article-title: Distributed Systems: Principles and Paradigms – year: 1998 ident: b23 article-title: Database Management Systems – reference: K. Sha, W. Shi, On the effects of consistency in data operations in wireless sensor networks, in: Proceedings of IEEE 12th International Conference on Parallel and Distributed Systems, 2006 – reference: K. Sha, J. Du, W. Shi, Wear: A balanced, fault-tolerant, energy-efficient routing protocol for wireless sensor networks, International Journal of Sensor Networks 1 (2) – volume: 13 start-page: 384 year: 2004 end-page: 403 ident: b29 article-title: Balancing energy efficiency and quality of aggregate data in sensor networks publication-title: The VLDB Journal – reference: O. Gnawali, et al. The tenet architecture for tiered sensor networks, in: Proc. of ACM SenSys 2006, 2006 – volume: 40 start-page: 102 year: 2002 end-page: 114 ident: b1 article-title: A survey on sensor networks publication-title: IEEE Communications Magazine – year: 2003 ident: b20 article-title: Computer Networks: A Systems Approach – reference: W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protocol for wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), New York, NY, 2002 – volume: 7 start-page: 65 year: 2003 end-page: 67 ident: b18 article-title: Mobicom poster: Top five myths about the energy consumption of wireless communication publication-title: Mobile Computing and Communications Review – volume: 47 start-page: 34 year: 2004 end-page: 40 ident: b35 article-title: Habitat monitoring with sensor networks publication-title: Communications of the ACM – reference: G. Mainland, D. Parkes, M. Welsh, Decentralized, adaptive resource allocation for sensor networks, in: Proc. of the NSDI’05, 2005 – reference: S. Madden, et al. Tinydb: An acqusitional query processing system for sensor networks, ACM Transactions on Database Systems 30 (1) – reference: D. Estrin, et al. Next century challenges: Scalable coordination in sensor networks, in: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’99), 1999 – reference: The nyquist-shannon sampling theorem. URL – reference: X. Tang, J. Xu, Extending network lifetime for precision-constrained data aggregation in wireless sensor networks, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’06), 2006 – reference: G. Simon, A. Ledeczi, M. Maroti, Sensor network-based countersniper system, in: Proc. of ACM SenSys 2004, 2004 – volume: 43 start-page: 51 year: 2000 end-page: 58 ident: b22 article-title: Wireless integrated network sensors publication-title: Communications of the ACM – reference: C. Sadler, P. Zhang, M. Martonosi, S. Lyon, Hardware design experiences in zebranet, in: Proc. of ACM SenSys 2004, 2004 – reference: K. Sha, W. Shi, Modeling data consistency in wireless sensor networks, Tech. Rep. MIST-TR-2006-013, Wayne State University (Oct. 2006) – reference: A. Cerpa, D. Estrin, ASCENT: Adaptive self-configuring sensor network topologies, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’02), 2002 – reference: N. Shrivastava, et al. Target tracking with binary proximity sensors: Fundamental limits, minimal descriptions, and algorithms, in: Proc. of ACM SenSys 2006, 2006 – reference: A. Marbini, L. Sacks, Adaptive sampling mechanisms in sensor networks, in: London Communications Symposium, 2003 – reference: N. Xu, et al. A wireless sensor network for structural monitoring, in: Proc. of ACM SenSys 2004, 2004 – reference: J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System, architecture directions for networked sensors, in: Proceedings the 9th ASPLOS’00, 2000, pp. 93–104 – reference: S. Rangwala, et al. Interference-aware fair rate control in wireless sensor networks, in: Proc. of ACM SIGCOMM’06, 2006 – reference: P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable simulation of entire tinyos applications, in: Proc. of ACM SenSys 2003, 2003 – reference: V. Shnayder, et al. Simulating the power consumption of large-scale sensor network applications, in: Proc. of ACM SenSys 2004, 2004 – reference: M. Batalin, et al. Call and responses: Experiments in sampling the environment, in: Proc. of ACM SenSys 2004, 2004 – volume: 40 start-page: 102 year: 2002 end-page: 114 ident: b9 article-title: Aida: Adaptive application independent data aggregation in wireless sensor networks publication-title: ACM Transactions on Embeded Computing Systems – reference: Crossbow technology inc. URL – reference: C. Lu, et al. A spatiotemporal query service for mobile users in sensor networks, in: Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05), 2005 – reference: S. Shah, S. Dharmarajan, K. Ramamritham, An efficient and resilient approach to filtering and disseminating streaming data, in: Proc. of 29th International Conference on Very Large Data Bases, 2003 – volume: 3 start-page: 126 year: 2005 end-page: 135 ident: b30 article-title: Modeling the lifetime of wireless sensor networks publication-title: Sensor Letters – reference: Q. Younis, S. Fahmy, Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach, in: Proc. of IEEE International Conference on Computer Communications (INFOCOM’04), 2004 – reference: J. Polastre, J. Hill, D. Culler, Veratile low power media access for wireless sensor networks, in: Proc. of ACM SenSys 2004, 2004 – reference: A. Jain, E. Chang, Adaptive sampling for sensor networks, in: Proc. of the 1st International Workshop on Data Management for Sensor Networks: in Conjunction with VLDB 2004, 2004 – volume: 13 start-page: 384 issue: 4 year: 2004 ident: 10.1016/j.jpdc.2008.06.004_b29 article-title: Balancing energy efficiency and quality of aggregate data in sensor networks publication-title: The VLDB Journal doi: 10.1007/s00778-004-0138-0 – ident: 10.1016/j.jpdc.2008.06.004_b10 doi: 10.1145/378993.379006 – ident: 10.1016/j.jpdc.2008.06.004_b4 – ident: 10.1016/j.jpdc.2008.06.004_b3 doi: 10.1145/510726.510736 – ident: 10.1016/j.jpdc.2008.06.004_b12 doi: 10.1145/958503.958506 – ident: 10.1016/j.jpdc.2008.06.004_b24 doi: 10.1145/1159913.1159922 – ident: 10.1016/j.jpdc.2008.06.004_b38 – ident: 10.1016/j.jpdc.2008.06.004_b41 doi: 10.1109/INFOCOM.2006.149 – ident: 10.1016/j.jpdc.2008.06.004_b17 – ident: 10.1016/j.jpdc.2008.06.004_b13 – volume: 3 start-page: 126 issue: 2 year: 2005 ident: 10.1016/j.jpdc.2008.06.004_b30 article-title: Modeling the lifetime of wireless sensor networks publication-title: Sensor Letters doi: 10.1166/sl.2005.017 – ident: 10.1016/j.jpdc.2008.06.004_b31 – volume: 1 start-page: 59 issue: 1 year: 2002 ident: 10.1016/j.jpdc.2008.06.004_b6 article-title: Connecting the physical world with pervasive networks publication-title: IEEE Pervasive Computing doi: 10.1109/MPRV.2002.993145 – ident: 10.1016/j.jpdc.2008.06.004_b2 doi: 10.1145/1031495.1031499 – volume: 7 start-page: 65 issue: 1 year: 2003 ident: 10.1016/j.jpdc.2008.06.004_b18 article-title: Mobicom poster: Top five myths about the energy consumption of wireless communication publication-title: Mobile Computing and Communications Review doi: 10.1145/881978.881998 – volume: 47 start-page: 34 issue: 6 year: 2004 ident: 10.1016/j.jpdc.2008.06.004_b35 article-title: Habitat monitoring with sensor networks publication-title: Communications of the ACM doi: 10.1145/990680.990704 – ident: 10.1016/j.jpdc.2008.06.004_b33 doi: 10.1145/1031495.1031518 – ident: 10.1016/j.jpdc.2008.06.004_b42 doi: 10.1145/1031495.1031498 – ident: 10.1016/j.jpdc.2008.06.004_b11 doi: 10.1145/1052199.1052202 – ident: 10.1016/j.jpdc.2008.06.004_b26 doi: 10.1145/1031495.1031509 – ident: 10.1016/j.jpdc.2008.06.004_b7 doi: 10.1145/1182807.1182823 – volume: 40 start-page: 102 issue: 8 year: 2002 ident: 10.1016/j.jpdc.2008.06.004_b9 article-title: Aida: Adaptive application independent data aggregation in wireless sensor networks publication-title: ACM Transactions on Embeded Computing Systems – year: 2003 ident: 10.1016/j.jpdc.2008.06.004_b20 – ident: 10.1016/j.jpdc.2008.06.004_b27 doi: 10.1504/IJSNET.2006.012031 – ident: 10.1016/j.jpdc.2008.06.004_b34 doi: 10.1145/1182807.1182833 – ident: 10.1016/j.jpdc.2008.06.004_b15 doi: 10.1145/1061318.1061322 – ident: 10.1016/j.jpdc.2008.06.004_b36 doi: 10.1145/1031495.1031497 – year: 2006 ident: 10.1016/j.jpdc.2008.06.004_b8 article-title: Energy-efficient and MAC-aware routing for data – ident: 10.1016/j.jpdc.2008.06.004_b39 – ident: 10.1016/j.jpdc.2008.06.004_b5 doi: 10.1145/313451.313556 – year: 2002 ident: 10.1016/j.jpdc.2008.06.004_b37 – ident: 10.1016/j.jpdc.2008.06.004_b16 – volume: 40 start-page: 106 issue: 7 year: 2007 ident: 10.1016/j.jpdc.2008.06.004_b19 article-title: Sensormap for wide-area sensor webs publication-title: Computer doi: 10.1109/MC.2007.250 – ident: 10.1016/j.jpdc.2008.06.004_b32 – ident: 10.1016/j.jpdc.2008.06.004_b14 – ident: 10.1016/j.jpdc.2008.06.004_b28 doi: 10.1016/B978-012722442-8/50014-8 – volume: 40 start-page: 102 issue: 8 year: 2002 ident: 10.1016/j.jpdc.2008.06.004_b1 article-title: A survey on sensor networks publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2002.1024422 – volume: 43 start-page: 51 issue: 5 year: 2000 ident: 10.1016/j.jpdc.2008.06.004_b22 article-title: Wireless integrated network sensors publication-title: Communications of the ACM doi: 10.1145/332833.332838 – year: 1998 ident: 10.1016/j.jpdc.2008.06.004_b23 – ident: 10.1016/j.jpdc.2008.06.004_b40 – ident: 10.1016/j.jpdc.2008.06.004_b21 doi: 10.1145/1031495.1031508 – ident: 10.1016/j.jpdc.2008.06.004_b25 |
| SSID | ssj0011578 |
| Score | 1.9493601 |
| Snippet | With more and more real deployments of wireless sensor network applications, we envision that their success is nonetheless determined by whether the sensor... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1207 |
| SubjectTerms | Adaptation Applied sciences Computer science; control theory; systems Computer systems and distributed systems. User interface Consistency models Data quality Energy efficiency Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software Wireless sensor networks |
| Title | Consistency-driven data quality management of networked sensor systems |
| URI | https://dx.doi.org/10.1016/j.jpdc.2008.06.004 https://www.proquest.com/docview/34554971 |
| Volume | 68 |
| WOSCitedRecordID | wos000258732400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0848 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011578 issn: 0743-7315 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELag4wEJ8Xui_Bh-4G0KahInsR8ntAkQmngYom9RbF_QqiqNmha2_5672E63VZ3YAy9WZTVp0u9y9zn-7o6xD0JUqRUKIptYEYkKJpG0Qke1AgCqEAVVnyj8rTg9ldOp-u6lvF3fTqBoGnlxodr_CjXOIdiUOnsHuIeT4gR-RtBxRNhx_Cfg-xacHVHhy8guyZkdkgzUp09eer1q0AA0TgaOtLPDBe0ilHbudpBWqhQ-n4OrL2Cp6C71y4I-Na5dr0Ic7Gs-umQz-APnm7leO_ATSML069oLBzkoqoJfoqqmReqyMIMTzeUVY1FXPGKcuK62PrrGiUuI3vLc7iXC7OOstcZLXGmbSGziVNibvxG-BlFh0KvNSjqH769Joj1xn-0lRabkiO0dfTmefh22meLMhepwRz6rygkAb17JLubyqK06fJ5q1whlK6b3ROXsKXvsweJHzjKesXvQPGdPQvcO7p35C3aybSicDIV7Q-EbQ-GLmg-Gwp2hcG8oL9mPk-OzT58j31UjMmkeryKNi0gDOeS5iSsFdWYzYybWIPGrdSGlSJGvGKVMYqVO7QSHLK9ErjSxXfTX-2zULBp4xbjODK4QRK2TCoStpC6Qfuu4kBanapiMWRz-sdL4kvPU-WRe7sZqzA6HY1pXcOXWb2cBiNJTRkcFS7SrW487uIba8FMJUfw0ycbsfYCxRIdLu2hVA4t1V6YCGbgq4td3utA37OHmWXrLRqvlGt6xB-b36rxbHni7_AtJuKdE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency-driven+data+quality+management+of+networked+sensor+systems&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Sha%2C+Kewei&rft.au=Shi%2C+Weisong&rft.date=2008-09-01&rft.issn=0743-7315&rft.volume=68&rft.issue=9&rft.spage=1207&rft.epage=1221&rft_id=info:doi/10.1016%2Fj.jpdc.2008.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2008_06_004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |