Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds
Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D city models related to sustainability, efficiency and resilience (i.e., energy demand estimation, estimation of the propagation of noise in a...
Uložené v:
| Vydané v: | Applied sciences Ročník 9; číslo 21; s. 4674 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.11.2019
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D city models related to sustainability, efficiency and resilience (i.e., energy demand estimation, estimation of the propagation of noise in an urban environment, routing and accessibility, flood or seismic damage assessment). With advancements in airborne laser scanning (ALS), 3D modeling of urban topography has increased its potential to automatize extraction of the characteristics of individual buildings. In 3D building modeling from light detection and ranging (LIDAR) point clouds, one major challenging issue is how to efficiently and accurately segment building regions and extract rooftop features. This study aims to present an investigation and critical comparison of two different fully automatic roof segmentation approaches for 3D building reconstruction. In particular, the paper presents and compares a cluster-based roof segmentation approach that uses (a) a fuzzy c-means clustering method refined through a density clustering and connectivity analysis, and (b) a region growing segmentation approach combined with random sample consensus (RANSAC) method. In addition, a robust 2.5D dual contouring method is utilized to deliver watertight 3D building modeling from the results of each proposed segmentation approach. The benchmark LIDAR point clouds and related reference data (generated by stereo plotting) of 58 buildings over downtown Toronto (Canada), made available to the scientific community by the International Society for Photogrammetry and Remote Sensing (ISPRS), have been used to evaluate the quality of the two proposed segmentation approaches by analysing the geometrical accuracy of the roof polygons. Moreover, the results of both approaches have been evaluated under different operating conditions against the real measurements (based on archive documentation and celerimetric surveys realized by a total station system) of a complex building located in the historical center of Matera (UNESCO world heritage site in southern Italy) that has been manually reconstructed in 3D via traditional Building Information Modeling (BIM) technique. The results demonstrate that both methods reach good performance metrics in terms of geometry accuracy. However, approach (b), based on region growing segmentation, exhibited slightly better performance but required greater computational time than the clustering-based approach. |
|---|---|
| AbstractList | Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D city models related to sustainability, efficiency and resilience (i.e., energy demand estimation, estimation of the propagation of noise in an urban environment, routing and accessibility, flood or seismic damage assessment). With advancements in airborne laser scanning (ALS), 3D modeling of urban topography has increased its potential to automatize extraction of the characteristics of individual buildings. In 3D building modeling from light detection and ranging (LIDAR) point clouds, one major challenging issue is how to efficiently and accurately segment building regions and extract rooftop features. This study aims to present an investigation and critical comparison of two different fully automatic roof segmentation approaches for 3D building reconstruction. In particular, the paper presents and compares a cluster-based roof segmentation approach that uses (a) a fuzzy c-means clustering method refined through a density clustering and connectivity analysis, and (b) a region growing segmentation approach combined with random sample consensus (RANSAC) method. In addition, a robust 2.5D dual contouring method is utilized to deliver watertight 3D building modeling from the results of each proposed segmentation approach. The benchmark LIDAR point clouds and related reference data (generated by stereo plotting) of 58 buildings over downtown Toronto (Canada), made available to the scientific community by the International Society for Photogrammetry and Remote Sensing (ISPRS), have been used to evaluate the quality of the two proposed segmentation approaches by analysing the geometrical accuracy of the roof polygons. Moreover, the results of both approaches have been evaluated under different operating conditions against the real measurements (based on archive documentation and celerimetric surveys realized by a total station system) of a complex building located in the historical center of Matera (UNESCO world heritage site in southern Italy) that has been manually reconstructed in 3D via traditional Building Information Modeling (BIM) technique. The results demonstrate that both methods reach good performance metrics in terms of geometry accuracy. However, approach (b), based on region growing segmentation, exhibited slightly better performance but required greater computational time than the clustering-based approach. |
| Author | Albano, Raffaele |
| Author_xml | – sequence: 1 givenname: Raffaele orcidid: 0000-0002-7956-9149 surname: Albano fullname: Albano, Raffaele |
| BookMark | eNptUdtKxDAQDaLguu6LXxDwTVjNrWn7uO56KSwoqz7HNE1Klm5S01bw741WUcRhmBlmzjkMM0dg33mnATjB6JzSHF3Its0JZjxle2BCUMrnlOF0_1d9CGZdt0XRckwzjCbguXCvuuttLXvrHYy-8d7AB13vtOvHpvEB0hW8HGxTWVfDjVbedX0Y1DgOfgcXOljZwHWxWmzgvbeuh8vGD1V3DA6MbDo9-8pT8HR99bi8na_vborlYj1XlON-LrEsDVUUlYwRg5GSKs11xhXLuZSJTlhuSk4YKjNuYlYVLnUqCWdJqipk6BQUo27l5Va0we5keBNeWvHZ8KEWMvRWNVoYhUgmU86QZgznSa5MDNQYRAhBuoxap6NWG_zLEM8jtn4ILq4vSEIpzyjOWEShEaWC77qgjVB2vFgfpG0ERuLjLeLnLZFy9ofyveg_4HesL47F |
| CitedBy_id | crossref_primary_10_3390_app13063977 crossref_primary_10_3390_heritage7040098 crossref_primary_10_3390_ijgi12010002 crossref_primary_10_3390_buildings15050691 crossref_primary_10_3390_ijgi11100517 crossref_primary_10_3390_rs17142496 crossref_primary_10_3390_rs14081912 crossref_primary_10_3390_rs12223726 crossref_primary_10_3390_urbansci7010017 crossref_primary_10_3390_app122211540 crossref_primary_10_3390_s21082890 crossref_primary_10_3390_app10031078 crossref_primary_10_3390_s20061700 crossref_primary_10_3390_app11136072 crossref_primary_10_3390_s23041915 crossref_primary_10_1016_j_patcog_2023_109307 crossref_primary_10_1057_s41599_022_01414_y crossref_primary_10_1109_JSEN_2023_3240092 crossref_primary_10_1088_1361_6501_ad0f69 crossref_primary_10_1038_s40494_025_01701_2 crossref_primary_10_3390_ijgi12070260 crossref_primary_10_1088_1742_6596_2162_1_012020 crossref_primary_10_3390_drones8060250 crossref_primary_10_3390_rs13081520 crossref_primary_10_1109_ACCESS_2020_3016674 crossref_primary_10_3390_rs15112930 crossref_primary_10_1109_ACCESS_2022_3144150 crossref_primary_10_3390_ijgi13080265 |
| Cites_doi | 10.3390/ijgi4042842 10.1109/JSTARS.2013.2251457 10.1080/19479832.2013.811124 10.1016/j.aei.2018.05.005 10.1002/9780470261309 10.3233/IFS-1994-2306 10.1016/S0924-2716(99)00010-6 10.1109/TGRS.2009.2030180 10.1109/JSTARS.2017.2781132 10.1145/331499.331504 10.1080/01431161.2017.1280624 10.1016/j.isprsjprs.2013.10.004 10.1016/j.isprsjprs.2014.04.009 10.1109/JSTARS.2014.2363463 10.3390/s17030621 10.1111/1467-9868.00293 10.1006/cviu.1998.0721 10.1016/j.isprsjprs.2011.09.008 10.1016/j.isprsjprs.2005.10.005 10.1016/j.compenvurbsys.2018.09.004 10.1145/358669.358692 10.1080/01431161.2017.1302112 10.1016/j.autcon.2014.12.015 |
| ContentType | Journal Article |
| Copyright | 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app9214674 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_fc028a7640e441959cf9593ff02220eb 10_3390_app9214674 |
| GeographicLocations | Canada Italy |
| GeographicLocations_xml | – name: Canada – name: Italy |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-a1abf3c30b442f10cac79e86c496aa5e549fb6240b86f624cd1be7a26457cd0f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498058600199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:08:33 EDT 2025 Mon Jun 30 07:59:04 EDT 2025 Sat Nov 29 07:18:48 EST 2025 Tue Nov 18 21:41:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-a1abf3c30b442f10cac79e86c496aa5e549fb6240b86f624cd1be7a26457cd0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7956-9149 |
| OpenAccessLink | https://doaj.org/article/fc028a7640e441959cf9593ff02220eb |
| PQID | 2533683184 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fc028a7640e441959cf9593ff02220eb proquest_journals_2533683184 crossref_citationtrail_10_3390_app9214674 crossref_primary_10_3390_app9214674 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rottensteiner (ref_30) 2014; 93 Jain (ref_19) 1999; 31 Zlatanova (ref_4) 2015; 4 Cheng (ref_15) 2015; 8 Tibshirani (ref_21) 2001; 63 ref_16 Fischler (ref_17) 1981; 24 Sampath (ref_7) 2010; 48 Suveg (ref_14) 2000; 33 Rabbani (ref_22) 2006; 36 Wang (ref_3) 2013; 4 Fischer (ref_13) 1998; 72 Sun (ref_24) 2013; 6 ref_23 Zhou (ref_25) 2010; 6313 Wang (ref_5) 2018; 11 Filin (ref_11) 2006; 60 ref_29 ref_27 Cao (ref_10) 2017; 38 ref_9 Dimitrov (ref_18) 2015; 51 Shan (ref_6) 2010; 11 Haala (ref_12) 1999; 54 Ma (ref_2) 2018; 37 Pahlavani (ref_8) 2017; 38 Bonczak (ref_1) 2019; 73 Rottensteiner (ref_26) 2014; 93 Mallet (ref_28) 2011; 66 Chiu (ref_20) 1994; 2 |
| References_xml | – volume: 4 start-page: 2842 year: 2015 ident: ref_4 article-title: Applications of 3D city models: State of the art review publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi4042842 – volume: 6 start-page: 1440 year: 2013 ident: ref_24 article-title: Airborne LiDAR point clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2251457 – volume: 4 start-page: 273 year: 2013 ident: ref_3 article-title: 3D building modeling using images and LiDAR: A review publication-title: Int. J. Image Data Fusion doi: 10.1080/19479832.2013.811124 – volume: 33 start-page: 538 year: 2000 ident: ref_14 article-title: 3D reconstruction of building models publication-title: Int. Arch. Photogramm. Remote Sens. – volume: 37 start-page: 163 year: 2018 ident: ref_2 article-title: A review of 3D reconstruction techniques in civil engineering and their applications publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2018.05.005 – volume: 36 start-page: 248 year: 2006 ident: ref_22 article-title: Segmentation of point clouds using smoothness constraint publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – ident: ref_29 doi: 10.1002/9780470261309 – volume: 2 start-page: 267 year: 1994 ident: ref_20 article-title: Fuzzy model identification based on cluster estimation publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-1994-2306 – ident: ref_16 – volume: 6313 start-page: 115 year: 2010 ident: ref_25 article-title: 2.5D dual contouring: A robust approach to creating building models from aerial lidar point clouds publication-title: Comput. Vis. ECCV – volume: 54 start-page: 130 year: 1999 ident: ref_12 article-title: Extraction of buildings and trees in urban environments publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(99)00010-6 – ident: ref_23 – volume: 48 start-page: 1554 year: 2010 ident: ref_7 article-title: Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2030180 – volume: 11 start-page: 421 year: 2010 ident: ref_6 article-title: Building extraction from LiDAR point clouds based on clustering techniques publication-title: Topogr. Laser Ranging Scanning – volume: 11 start-page: 606 year: 2018 ident: ref_5 article-title: LiDAR point clouds to 3-D urban models: A review publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2781132 – volume: 31 start-page: 264 year: 1999 ident: ref_19 article-title: Data clustering: A review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 38 start-page: 1451 year: 2017 ident: ref_8 article-title: 3D reconstruction of buildings from LiDAR data considering various types of roof structures publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1280624 – volume: 93 start-page: 256 year: 2014 ident: ref_26 article-title: Jung results of the ISPRS benchmark on urban object detection and 3D building reconstruction publication-title: ISPRS J. Photogram. Rem. Sens. doi: 10.1016/j.isprsjprs.2013.10.004 – ident: ref_27 – volume: 93 start-page: 143 year: 2014 ident: ref_30 article-title: Theme section “Urban object detection and 3D building reconstruction” publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.009 – volume: 8 start-page: 691 year: 2015 ident: ref_15 article-title: Three-dimensional reconstruction of large multilayer interchange bridge using airborne LiDAR data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2363463 – ident: ref_9 doi: 10.3390/s17030621 – volume: 63 start-page: 411 year: 2001 ident: ref_21 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00293 – volume: 72 start-page: 185 year: 1998 ident: ref_13 article-title: Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1998.0721 – volume: 66 start-page: S71 year: 2011 ident: ref_28 article-title: Relevance assessment of full-waveform lidar data for urban area classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.09.008 – volume: 60 start-page: 71 year: 2006 ident: ref_11 article-title: Segmentation of airborne laser scanning data using a slope adaptive neighborhood publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2005.10.005 – volume: 73 start-page: 126 year: 2019 ident: ref_1 article-title: Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.09.004 – volume: 24 start-page: 381 year: 1981 ident: ref_17 article-title: Random sample paradigm for model consensus: A apphcatlons to image fitting with analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 38 start-page: 3684 year: 2017 ident: ref_10 article-title: Roof plane extraction from airborne lidar point clouds publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1302112 – volume: 51 start-page: 32 year: 2015 ident: ref_18 article-title: Segmentation of building point cloud models including detailed architectural/structural features and MEP systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2014.12.015 |
| SSID | ssj0000913810 |
| Score | 2.3145554 |
| Snippet | Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4674 |
| SubjectTerms | 3d building 3d urban model Accuracy Buildings Clustering Datasets lidar point clouds Methods reconstruction Remote sensing Roofing rooftop modeling segmentation Urban planning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ba9swFH506Q7roW26jaZNi2A7rAczOZJl61SSJqGDEUK2QW-eJOuVQmdncbbfP8lRkpaVXgoGg_0Ohu_p6XuS9X0AH4sCM0yUjIzrFiKuUUcSUURMmpT2JEcqdWM2kU4m2c2NnIYFtzr8VrmuiU2hLirj18g_9xwvEZnLQH45_x151yi_uxosNF7Brlcqc3m-OxhNprPNKotXvcxiutIlZa6_9_vC0ptZp_zRTNQI9v9Xj5tJZnzw0s87hP1AL0l_lQ9t2LHlEew9EB08gnYYzjX5FDSnL97Czwd6G1VJ3DWrKiTf7O2vcDipJI7eEjYkg2CkTXznutWfJf6gCuk3CU2-fhn2Z2Ra3ZVLcnVf_Snqd_BjPPp-dR0F84XIMBEvIxUrjcwwqjnvYUyNMqm0mTBcCqUS6_pK1MLxAZ0JdHdTxNqmyvGrJDUFRfYeWmVV2mMgglmVJMxmtBA8VVZyi9JYhpj1bJEkHbhYA5GboEzuDTLuc9eheNDyLWgd-LCJna_0OJ6MGng8NxFeQ7t5UC1u8zAkczSOW6lUcGodJ5SJNOhVmhF9D0yt7kB3DXUeBnadb3E-ef71Kbxx3Equji12oeXQsGfw2vxd3tWL85Cn_wAAfPOE priority: 102 providerName: ProQuest |
| Title | Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds |
| URI | https://www.proquest.com/docview/2533683184 https://doaj.org/article/fc028a7640e441959cf9593ff02220eb |
| Volume | 9 |
| WOSCitedRecordID | wos000498058600199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KmkN7KE3a0k3TIEgPzcFEXsmSddzNBw20i9m2kJwcSdaUQGqH7ja_PyNbSbYk0EvAYGwGbGZGM_Ow9R7Ap6bBEgtrMk9oIZMOXWYQVSaM13xsJHLjerEJPZuVp6emWpH6iv-EDfTAg-P20VMHtFpJHqhzm8J4jFy6iBGp8OBi9eXarICpvgabPFJXDXykgnB9_B5sooi1lv90oJ6o_0Ed7pvL8Wt4laZCNhneZgOehXYTXq5wBW7CRlqFC_Y5UUXvvYHzFZqMrmV0zLsO2ffw63faU9QymkqZOGTTpH_NIuC8p41lcX8Jm_R5yL6eHE7mrOou2iU7uOz-Nou38PP46MfBlyxpJmReqHyZ2dw6FF5wJ-UYc-6t1yaUykujrC0CwUF0itq4KxXS2Te5C9rSWFRo33AU72Ct7drwHpgSwRaFCCVvlNQ2GBnQ-ECuL8ehKYoR7N36sfaJUDzqWlzWBCyiz-t7n49g9872aqDReNRqGsNxZxGpr_sblBB1Soj6fwkxgu3bYNZpPS7qMU21qqT6Jbee4hkf4AUNTmbYk7gNaxSz8BHW_fXyYvFnB55Pj2bVfKdPSbqqTr5VZzdeqObO |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ra9RAEB7qVVAf1FalZ6suqGAfgpvsZpN9ELn2LD16PY5aoT7FzWanFNqkNmdL_5S_0d1kc1dRfOuDEAgkQyCZb2dndjPfB_CmKDDFWMlA22oh4DnmgUQUAZM6oZHkSGXeiE0kk0l6dCSnS_Cz64Vxv1V2MbEJ1EWl3Rr5-8jmJSK1COQfz78HTjXK7a52EhotLPbM9ZUt2eoPo6H179so2vl0uL0beFWBQDMRzgIVqhyZZjTnPMKQaqUTaVKhuRRKxcYWTJgLO9HlqUB71kWYm0TZxCFOdEGR2efegWXuwN6D5elof_p1vqrjWDbTkLY8qIxJ6vahpRPPTvhvM18jEPBH_G8mtZ1H_9vneAwPffpMBi3eV2DJlKvw4Aap4iqs-HBVk3eeU3vzCXy7wSdSlcQeB1WF5LM5PvPNVyWx6TthQ7LlhcKJq8wX_LrENeKQQTNgyXg0HByQaXVSzsj2afWjqJ_Cl1t572fQK6vSrAERzKg4ZialheCJMpIblNowxDQyRRz3YbNzfKY987oTADnNbAXmQJItQNKH13Pb85Zv5K9WWw4_cwvHEd5cqC6OMx9yMtQ2d1SJ4NTYnFfGUqNjoUZ0NT41eR82OmhlPnDV2QJXz_99-xXc2z3cH2fj0WRvHe7bPFK2LZob0LOeMS_grr6cndQXL_0YIdbVt4zDX9fpUeI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RAFL3UrYg-qK2Kq1UHVLAPoZPM5GMeRLZdF5fWJVSF-hQnk7mlUJParIp_zV_nnexkt6L41gchEEiGQDJn7pw7k3sOwLOqwgxjrQJD2UIgSywDhZgEQpmUR0oiV2VnNpHOZtnRkcrX4GdfC-N-q-xjYheoq8a4NfKdiHhJkhEC5Q763yLy8eTV2ZfAOUi5ndbeTmMBkX374zulb-3L6Zj6-nkUTV6_33sTeIeBwIgknAc61CUKI3gpZYQhN9qkymaJkSrROraUPGGZ0KRXZgnS2VRhaVNNJCJOTcVR0HOvwDpRchkNYD2fvs0_Lld4nOJmFvKFJqoQirs9aeWMtFP52yzYmQX8MRd0E9zk1v_8aW7DTU-r2WgxDjZgzdabcOOC2OImbPgw1rIXXmt7-w58uqAz0tSMjsOmQfbOHn_2RVk1I1rPxJjtegNx5jL2le4ucwU6bNQNZHYwHY8OWd6c1HO2d9p8rdq78OFS3vseDOqmtveBJcLqOBY241UiU22VtKiMFYhZZKs4HsJ2D4LCeEV2ZwxyWlBm5gBTrAAzhKfLtmcLHZK_ttp1WFq2cNrh3YXm_LjwoahAQ5xSp4nklriwipVBp06N6HJ_bsshbPUwK3xAa4sVxh78-_YTuEbgKw6ms_2HcJ3opVpUbm7BgDrGPoKr5tv8pD1_7IcLo56-ZBj-Ap2BWqI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+Roof+Segmentation+for+3D+Building+Reconstruction+from+Aerial+LIDAR+Point+Clouds&rft.jtitle=Applied+sciences&rft.au=Raffaele+Albano&rft.date=2019-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=21&rft.spage=4674&rft_id=info:doi/10.3390%2Fapp9214674&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fc028a7640e441959cf9593ff02220eb |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |