Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds

Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D city models related to sustainability, efficiency and resilience (i.e., energy demand estimation, estimation of the propagation of noise in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 9; H. 21; S. 4674
1. Verfasser: Albano, Raffaele
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2019
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D city models related to sustainability, efficiency and resilience (i.e., energy demand estimation, estimation of the propagation of noise in an urban environment, routing and accessibility, flood or seismic damage assessment). With advancements in airborne laser scanning (ALS), 3D modeling of urban topography has increased its potential to automatize extraction of the characteristics of individual buildings. In 3D building modeling from light detection and ranging (LIDAR) point clouds, one major challenging issue is how to efficiently and accurately segment building regions and extract rooftop features. This study aims to present an investigation and critical comparison of two different fully automatic roof segmentation approaches for 3D building reconstruction. In particular, the paper presents and compares a cluster-based roof segmentation approach that uses (a) a fuzzy c-means clustering method refined through a density clustering and connectivity analysis, and (b) a region growing segmentation approach combined with random sample consensus (RANSAC) method. In addition, a robust 2.5D dual contouring method is utilized to deliver watertight 3D building modeling from the results of each proposed segmentation approach. The benchmark LIDAR point clouds and related reference data (generated by stereo plotting) of 58 buildings over downtown Toronto (Canada), made available to the scientific community by the International Society for Photogrammetry and Remote Sensing (ISPRS), have been used to evaluate the quality of the two proposed segmentation approaches by analysing the geometrical accuracy of the roof polygons. Moreover, the results of both approaches have been evaluated under different operating conditions against the real measurements (based on archive documentation and celerimetric surveys realized by a total station system) of a complex building located in the historical center of Matera (UNESCO world heritage site in southern Italy) that has been manually reconstructed in 3D via traditional Building Information Modeling (BIM) technique. The results demonstrate that both methods reach good performance metrics in terms of geometry accuracy. However, approach (b), based on region growing segmentation, exhibited slightly better performance but required greater computational time than the clustering-based approach.
AbstractList Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D city models related to sustainability, efficiency and resilience (i.e., energy demand estimation, estimation of the propagation of noise in an urban environment, routing and accessibility, flood or seismic damage assessment). With advancements in airborne laser scanning (ALS), 3D modeling of urban topography has increased its potential to automatize extraction of the characteristics of individual buildings. In 3D building modeling from light detection and ranging (LIDAR) point clouds, one major challenging issue is how to efficiently and accurately segment building regions and extract rooftop features. This study aims to present an investigation and critical comparison of two different fully automatic roof segmentation approaches for 3D building reconstruction. In particular, the paper presents and compares a cluster-based roof segmentation approach that uses (a) a fuzzy c-means clustering method refined through a density clustering and connectivity analysis, and (b) a region growing segmentation approach combined with random sample consensus (RANSAC) method. In addition, a robust 2.5D dual contouring method is utilized to deliver watertight 3D building modeling from the results of each proposed segmentation approach. The benchmark LIDAR point clouds and related reference data (generated by stereo plotting) of 58 buildings over downtown Toronto (Canada), made available to the scientific community by the International Society for Photogrammetry and Remote Sensing (ISPRS), have been used to evaluate the quality of the two proposed segmentation approaches by analysing the geometrical accuracy of the roof polygons. Moreover, the results of both approaches have been evaluated under different operating conditions against the real measurements (based on archive documentation and celerimetric surveys realized by a total station system) of a complex building located in the historical center of Matera (UNESCO world heritage site in southern Italy) that has been manually reconstructed in 3D via traditional Building Information Modeling (BIM) technique. The results demonstrate that both methods reach good performance metrics in terms of geometry accuracy. However, approach (b), based on region growing segmentation, exhibited slightly better performance but required greater computational time than the clustering-based approach.
Author Albano, Raffaele
Author_xml – sequence: 1
  givenname: Raffaele
  orcidid: 0000-0002-7956-9149
  surname: Albano
  fullname: Albano, Raffaele
BookMark eNptUdtKxDAQDaLguu6LXxDwTVjNrWn7uO56KSwoqz7HNE1Klm5S01bw741WUcRhmBlmzjkMM0dg33mnATjB6JzSHF3Its0JZjxle2BCUMrnlOF0_1d9CGZdt0XRckwzjCbguXCvuuttLXvrHYy-8d7AB13vtOvHpvEB0hW8HGxTWVfDjVbedX0Y1DgOfgcXOljZwHWxWmzgvbeuh8vGD1V3DA6MbDo9-8pT8HR99bi8na_vborlYj1XlON-LrEsDVUUlYwRg5GSKs11xhXLuZSJTlhuSk4YKjNuYlYVLnUqCWdJqipk6BQUo27l5Va0we5keBNeWvHZ8KEWMvRWNVoYhUgmU86QZgznSa5MDNQYRAhBuoxap6NWG_zLEM8jtn4ILq4vSEIpzyjOWEShEaWC77qgjVB2vFgfpG0ERuLjLeLnLZFy9ofyveg_4HesL47F
CitedBy_id crossref_primary_10_3390_app13063977
crossref_primary_10_3390_heritage7040098
crossref_primary_10_3390_ijgi12010002
crossref_primary_10_3390_buildings15050691
crossref_primary_10_3390_ijgi11100517
crossref_primary_10_3390_rs17142496
crossref_primary_10_3390_rs14081912
crossref_primary_10_3390_rs12223726
crossref_primary_10_3390_urbansci7010017
crossref_primary_10_3390_app122211540
crossref_primary_10_3390_s21082890
crossref_primary_10_3390_app10031078
crossref_primary_10_3390_s20061700
crossref_primary_10_3390_app11136072
crossref_primary_10_3390_s23041915
crossref_primary_10_1016_j_patcog_2023_109307
crossref_primary_10_1057_s41599_022_01414_y
crossref_primary_10_1109_JSEN_2023_3240092
crossref_primary_10_1088_1361_6501_ad0f69
crossref_primary_10_1038_s40494_025_01701_2
crossref_primary_10_3390_ijgi12070260
crossref_primary_10_1088_1742_6596_2162_1_012020
crossref_primary_10_3390_drones8060250
crossref_primary_10_3390_rs13081520
crossref_primary_10_1109_ACCESS_2020_3016674
crossref_primary_10_3390_rs15112930
crossref_primary_10_1109_ACCESS_2022_3144150
crossref_primary_10_3390_ijgi13080265
Cites_doi 10.3390/ijgi4042842
10.1109/JSTARS.2013.2251457
10.1080/19479832.2013.811124
10.1016/j.aei.2018.05.005
10.1002/9780470261309
10.3233/IFS-1994-2306
10.1016/S0924-2716(99)00010-6
10.1109/TGRS.2009.2030180
10.1109/JSTARS.2017.2781132
10.1145/331499.331504
10.1080/01431161.2017.1280624
10.1016/j.isprsjprs.2013.10.004
10.1016/j.isprsjprs.2014.04.009
10.1109/JSTARS.2014.2363463
10.3390/s17030621
10.1111/1467-9868.00293
10.1006/cviu.1998.0721
10.1016/j.isprsjprs.2011.09.008
10.1016/j.isprsjprs.2005.10.005
10.1016/j.compenvurbsys.2018.09.004
10.1145/358669.358692
10.1080/01431161.2017.1302112
10.1016/j.autcon.2014.12.015
ContentType Journal Article
Copyright 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app9214674
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals (Freely Accessible)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_fc028a7640e441959cf9593ff02220eb
10_3390_app9214674
GeographicLocations Canada
Italy
GeographicLocations_xml – name: Canada
– name: Italy
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-a1abf3c30b442f10cac79e86c496aa5e549fb6240b86f624cd1be7a26457cd0f3
IEDL.DBID BENPR
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498058600199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:08:33 EDT 2025
Mon Jun 30 07:59:04 EDT 2025
Sat Nov 29 07:18:48 EST 2025
Tue Nov 18 21:41:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-a1abf3c30b442f10cac79e86c496aa5e549fb6240b86f624cd1be7a26457cd0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7956-9149
OpenAccessLink https://www.proquest.com/docview/2533683184?pq-origsite=%requestingapplication%
PQID 2533683184
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_fc028a7640e441959cf9593ff02220eb
proquest_journals_2533683184
crossref_citationtrail_10_3390_app9214674
crossref_primary_10_3390_app9214674
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rottensteiner (ref_30) 2014; 93
Jain (ref_19) 1999; 31
Zlatanova (ref_4) 2015; 4
Cheng (ref_15) 2015; 8
Tibshirani (ref_21) 2001; 63
ref_16
Fischler (ref_17) 1981; 24
Sampath (ref_7) 2010; 48
Suveg (ref_14) 2000; 33
Rabbani (ref_22) 2006; 36
Wang (ref_3) 2013; 4
Fischer (ref_13) 1998; 72
Sun (ref_24) 2013; 6
ref_23
Zhou (ref_25) 2010; 6313
Wang (ref_5) 2018; 11
Filin (ref_11) 2006; 60
ref_29
ref_27
Cao (ref_10) 2017; 38
ref_9
Dimitrov (ref_18) 2015; 51
Shan (ref_6) 2010; 11
Haala (ref_12) 1999; 54
Ma (ref_2) 2018; 37
Pahlavani (ref_8) 2017; 38
Bonczak (ref_1) 2019; 73
Rottensteiner (ref_26) 2014; 93
Mallet (ref_28) 2011; 66
Chiu (ref_20) 1994; 2
References_xml – volume: 4
  start-page: 2842
  year: 2015
  ident: ref_4
  article-title: Applications of 3D city models: State of the art review
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi4042842
– volume: 6
  start-page: 1440
  year: 2013
  ident: ref_24
  article-title: Airborne LiDAR point clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2251457
– volume: 4
  start-page: 273
  year: 2013
  ident: ref_3
  article-title: 3D building modeling using images and LiDAR: A review
  publication-title: Int. J. Image Data Fusion
  doi: 10.1080/19479832.2013.811124
– volume: 33
  start-page: 538
  year: 2000
  ident: ref_14
  article-title: 3D reconstruction of building models
  publication-title: Int. Arch. Photogramm. Remote Sens.
– volume: 37
  start-page: 163
  year: 2018
  ident: ref_2
  article-title: A review of 3D reconstruction techniques in civil engineering and their applications
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2018.05.005
– volume: 36
  start-page: 248
  year: 2006
  ident: ref_22
  article-title: Segmentation of point clouds using smoothness constraint
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_29
  doi: 10.1002/9780470261309
– volume: 2
  start-page: 267
  year: 1994
  ident: ref_20
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-1994-2306
– ident: ref_16
– volume: 6313
  start-page: 115
  year: 2010
  ident: ref_25
  article-title: 2.5D dual contouring: A robust approach to creating building models from aerial lidar point clouds
  publication-title: Comput. Vis. ECCV
– volume: 54
  start-page: 130
  year: 1999
  ident: ref_12
  article-title: Extraction of buildings and trees in urban environments
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(99)00010-6
– ident: ref_23
– volume: 48
  start-page: 1554
  year: 2010
  ident: ref_7
  article-title: Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2030180
– volume: 11
  start-page: 421
  year: 2010
  ident: ref_6
  article-title: Building extraction from LiDAR point clouds based on clustering techniques
  publication-title: Topogr. Laser Ranging Scanning
– volume: 11
  start-page: 606
  year: 2018
  ident: ref_5
  article-title: LiDAR point clouds to 3-D urban models: A review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2781132
– volume: 31
  start-page: 264
  year: 1999
  ident: ref_19
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 38
  start-page: 1451
  year: 2017
  ident: ref_8
  article-title: 3D reconstruction of buildings from LiDAR data considering various types of roof structures
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1280624
– volume: 93
  start-page: 256
  year: 2014
  ident: ref_26
  article-title: Jung results of the ISPRS benchmark on urban object detection and 3D building reconstruction
  publication-title: ISPRS J. Photogram. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2013.10.004
– ident: ref_27
– volume: 93
  start-page: 143
  year: 2014
  ident: ref_30
  article-title: Theme section “Urban object detection and 3D building reconstruction”
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.009
– volume: 8
  start-page: 691
  year: 2015
  ident: ref_15
  article-title: Three-dimensional reconstruction of large multilayer interchange bridge using airborne LiDAR data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2363463
– ident: ref_9
  doi: 10.3390/s17030621
– volume: 63
  start-page: 411
  year: 2001
  ident: ref_21
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00293
– volume: 72
  start-page: 185
  year: 1998
  ident: ref_13
  article-title: Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1998.0721
– volume: 66
  start-page: S71
  year: 2011
  ident: ref_28
  article-title: Relevance assessment of full-waveform lidar data for urban area classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.09.008
– volume: 60
  start-page: 71
  year: 2006
  ident: ref_11
  article-title: Segmentation of airborne laser scanning data using a slope adaptive neighborhood
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2005.10.005
– volume: 73
  start-page: 126
  year: 2019
  ident: ref_1
  article-title: Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2018.09.004
– volume: 24
  start-page: 381
  year: 1981
  ident: ref_17
  article-title: Random sample paradigm for model consensus: A apphcatlons to image fitting with analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 38
  start-page: 3684
  year: 2017
  ident: ref_10
  article-title: Roof plane extraction from airborne lidar point clouds
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1302112
– volume: 51
  start-page: 32
  year: 2015
  ident: ref_18
  article-title: Segmentation of building point cloud models including detailed architectural/structural features and MEP systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2014.12.015
SSID ssj0000913810
Score 2.3144612
Snippet Three-dimensional (3D) reconstruction techniques are increasingly used to obtain 3D representations of buildings due to the broad range of applications for 3D...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4674
SubjectTerms 3d building
3d urban model
Accuracy
Buildings
Clustering
Datasets
lidar point clouds
Methods
reconstruction
Remote sensing
Roofing
rooftop modeling
segmentation
Urban planning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (Freely Accessible)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4iPuiDuKk4nRLQB_dQTJc0aR43f6AgMqaCbzVJExFmK27693tps1lR8EUoFEqg5e5y93009x1CRzmjVvNYR5zxJGLGkEhyIyKl0lQTE1tJq0bha3Fzkz48yFFj1Jc_E1bLA9eGO3EGKqASnBELlVsm0jivpeucZyrEap99iZANMlXlYBl76apaj5QCr_f_g6UfYi3YtwpUCfX_yMNVcbnYQOsBFeJB_TUttGSLNlpraAW2USvswik-DlLRvU302JDJKAsM17gsHb61Ty-hp6jAgEoxPcPDMP8ae8L5JRuLfX8JHlRxiK-vzgZjPCqfixk-nZTv-XQL3V-c351eRmFmQmQoj2eRipV21FCiGeu7mBhlhLQpN0xypRILdNBpDmVcp9zB3eSxtkIBLEqEyYmj22i5KAu7g7AGbOEAkWli-0znTCVJKnNLZC6NyCXtoN7cjpkJguJ-rsUkA2LhbZ592byDDhdrX2sZjV9XDb07Fiu89HX1AAIiCwGR_RUQHdSdOzML-3Ga9QHV8hTyF9v9j3fsoVUATrLuSeyiZfCZ3Ucr5mP2PH07qELxE64P4ss
  priority: 102
  providerName: Directory of Open Access Journals
Title Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds
URI https://www.proquest.com/docview/2533683184
https://doaj.org/article/fc028a7640e441959cf9593ff02220eb
Volume 9
WOSCitedRecordID wos000498058600199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB610EM5lEKL2PKQpXIoh6jO2nHiE9rloSLRVbS0Ej2lfiIkSIBs-_sZZ727oCIulSJFSXyI9M3Y34w93wDsWc6cFqlOBBdZwo2hiRQmT5QqCk1N6iTrCoXP8tGouLiQZUy4tfFY5WxO7CZq25iQI__aR14iCrRAfnB7l4SuUWF3NbbQeA3LQakM7Xx5eDwqx_MsS1C9LFI61SVlGN-HfWEZmlnn_MlK1An2_zMfd4vMyer__t57eBfpJRlM7WENXrl6HVYeiQ6uw1p055Z8iZrT-x_g9yO9jaYmeI2bxpNzd3kTi5NqgvSWsCMyjI20SYhcF_qzJBSqkEFn0OTs9GgwJmVzVU_I4XXzx7Yf4efJ8Y_Db0lsvpAYJtJJolKlPTOMas77PqVGmVy6QhguhVKZw7jSa4F8QBfC493YVLtcIb_KcmOpZxuwVDe12wSikaR4pHaauj7XlqssK6R1VFppcitZD_ZnQFQmKpOHBhnXFUYoAbRqAVoPPs_H3k71OJ4dNQx4zkcEDe3uRXN_WUWXrLxBbqVywalDTigzaXxQafY-xMDU6R5sz6CuomO31QLnTy9_3oK3yK3ktGxxG5YQDbcDb8zfyVV7vxvtdLdLAeBTefq9_PUA_671dA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ra9RAEB7qVVAf1Falp1UXVLAPwU12s8k-iFx7lh69HketUJ_i7ma3FNqk9k7FP-VvdDbZ3FUU3_ogBALJEEjm29lvdjPfALwsObNaxDoSXKQRN4ZGUpgsUirPNTWxlawpFB5nk0l-fCynK_Czq4Xxv1V2MbEJ1GVt_Br5mwR5icgRgfzdxZfId43yu6tdC40WFvv2x3dM2WZvR0P076sk2X1_tLMXha4CkWEinkcqVtoxw6jmPHExNcpk0ubCcCmUSi0mTE4LnOh0LhyeTRlrmykkDmlmSuoYPvcGrHIP9h6sTkcH00-LVR2vspnHtNVBZUxSvw8tffPsjP828zUNAv6I_82ktnvvf_sc9-FuoM9k0OJ9DVZstQ53rogqrsNaCFcz8jpoam89gM9X9ETqiuBxWNeOfLAn56H4qiJI3wkbku3QKJz4zHypr0t8IQ4ZNAOWjEfDwSGZ1qfVnOyc1V_L2UP4eC3v_Qh6VV3ZDSAaSZhD6qqpTbguuUrTXJaWylKarJSsD1ud4wsTlNd9A5CzAjMwD5JiCZI-vFjYXrR6I3-12vb4WVh4jfDmQn15UoSQUziD3FFlglOLnFem0jivQu2cz_Gp1X3Y7KBVhMA1K5a4evzv28_h1t7RwbgYjyb7T-A28kjZlmhuQg89Y5_CTfNtfjq7fBbGCEFXXzMOfwHx9FEr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ra9UwFD7MOxH3oG4qXp0aUME9lKVNmjYPIne7XrzseilTYT7VJk3GYGvnelX8a_46T9r03oni2x6EQqENhSZfzvlOkvMdgOclZ0aJUAWCizjgWtNACp0ERZGmiurQSNYmCs-S-Tw9OpLZGvzsc2HcscreJraGuqy1WyPfjZCXiBQRyHetPxaRjSevz78EroKU22nty2l0EDkwP75j-Na8mo5xrF9E0eTNh_23ga8wEGgmwkVQhIWyTDOqOI9sSHWhE2lSobkURREbDJ6sEuj0VCos3nUZKpMUSCLiRJfUMvzuNVhHSs6jAaxn03fZp-UKj1PcTEPaaaIyJqnbk5aukHbCf_OCbbGAP3xB6-Amt__nrrkDtzytJqNuHmzCmqm2YOOS2OIWbHoz1pCXXmt75y58vqQzUlcEr8O6tuS9OT7zSVkVQVpP2Jjs-QLixEXsK91d4hJ0yKidyGQ2HY8OSVafVAuyf1p_LZt78PFK_vs-DKq6Mg-AKCRnFimtoibiquRFHKeyNFSWUielZEPY6UGQa6_I7gqDnOYYmTnA5CvADOHZsu15p0Py11Z7DkvLFk47vH1QXxzn3hTlViOnLBLBqUEuLGOprVOnttbF_tSoIWz3MMu9QWvyFcYe_vv1U7iB4Mtn0_nBI7iJ9FJ2mZvbMMCBMY_huv62OGkunvjpQnCkrxiGvwCxm1nr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+Roof+Segmentation+for+3D+Building+Reconstruction+from+Aerial+LIDAR+Point+Clouds&rft.jtitle=Applied+sciences&rft.au=Albano%2C+Raffaele&rft.date=2019-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=9&rft.issue=21&rft.spage=4674&rft_id=info:doi/10.3390%2Fapp9214674&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon