On the Lossless Compression of HyperHeight LiDAR Forested Landscape Data

Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 17; H. 21; S. 3588
Hauptverfasser: Makarichev, Viktor, Ramirez-Jaime, Andres, Porras-Diaz, Nestor, Vasilyeva, Irina, Lukin, Vladimir, Arce, Gonzalo, Okarma, Krzysztof
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2025
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Satellite Light Detection and Ranging (LiDAR) systems produce high-resolution data essential for confronting critical environmental challenges like climate change, disaster management, and ecological conservation. A HyperHeight Data Cube (HHDC) is a novel representation of LiDAR data. HHDCs are structured three-dimensional tensors, where each cell captures the number of photons detected at specific spatial and height coordinates. These data structures preserve the detailed vertical and horizontal information essential for ecological and topographical analyses, particularly Digital Terrain Models and canopy height profiles. In this paper, we investigate lossless compression techniques for large volumes of HHDCs to alleviate constraints on onboard storage, processing resources, and downlink bandwidth. We analyze several methods, including bit packing, Rice coding (RC), run-length encoding (RLE), and context-adaptive binary arithmetic coding (CABAC), as well as their combinations. We introduce the block-splitting framework, which is a simplified version of octrees. The combination of RC with RLE and CABAC within this framework achieves a median compression ratio greater than 24, which is confirmed by the results of processing two large sets of HHDCs simulated using the Smithsonian Environmental Research Center NEON data.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2072-4292
2072-4292
DOI:10.3390/rs17213588