The ML-EM Algorithm is Not Optimal for Poisson Noise
The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...
Uložené v:
| Vydané v: | IEEE transactions on nuclear science Ročník 62; číslo 5; s. 2096 - 2101 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9499, 1558-1578 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an approximate solution that is close to the true solution. It is well-known that the ML-EM algorithm at early iterations converges towards the true solution and then in later iterations diverges away from the true solution. Therefore a potential good approximate solution can only be obtained by early termination. This short paper argues that the ML-EM algorithm is not optimal in providing such an approximate solution. In order to show that the ML-EM algorithm is not optimal, it is only necessary to provide a different algorithm that performs better. An alternative algorithm is suggested in this paper and this alternative algorithm is able to outperform the ML-EM algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9499 1558-1578 |
| DOI: | 10.1109/TNS.2015.2475128 |