TDJSCC: Low Complexity and Bandwidth Efficient Deep Joint Source-Channel Coding With OFDM
The practical deployment of deep joint source-channel coding (DJSCC) in edge devices faces two critical limitations. First, the prohibitive computational complexity of deep neural networks hinders efficiency. Second, existing OFDM-based systems suffer from bandwidth inefficiency due to dedicated pil...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 150244 - 150257 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The practical deployment of deep joint source-channel coding (DJSCC) in edge devices faces two critical limitations. First, the prohibitive computational complexity of deep neural networks hinders efficiency. Second, existing OFDM-based systems suffer from bandwidth inefficiency due to dedicated pilot symbol allocation. To address these challenges, we propose tensorized deep joint source-channel coding (TDJSCC), a novel DJSCC framework that integrates a tensorized convolutional neural network (TCNN) with in-band pilot-augmented orthogonal frequency-division multiplexing (OFDM). The TCNN decomposes high-dimensional convolution kernels into cascaded low-rank tensor operations through singular value decomposition (SVD). Simultaneously, our in-band pilot design eliminates dedicated pilot symbols by strategically replacing data subcarriers with pilot tones. This approach achieves 100% bandwidth efficiency while maintaining channel estimation accuracy through optimized discrete Fourier transform (DFT) interpolation. The simulation results demonstrate that the proposed TDJSCC model outperforms the existing DJSCC model on low-resolution datasets and achieves comparable performance for high-resolution datasets, with 87% fewer parameters and <inline-formula> <tex-math notation="LaTeX">3.1\times </tex-math></inline-formula> floating-point operations (FLOPs) reduction. Furthermore, the proposed TDJSCC achieves improved performance, significantly lower computational complexity, and full bandwidth efficiency. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2025.3602059 |